A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Green Synthesis of Exell-Mediated Silver Nanoparticles and Evaluation of Antibacterial Performance. | LitMetric

This study uses a novel method in which extracts from different parts of a single plant are used to synthesize well-defined silver nanoparticles (AgNPs) to address the lack of capping agents in certain plant extracts. We focused on synthesizing AgNPs with enhanced biomedical activity using aqueous leaves and fruit extracts of Exell, a plant native to northern Australia that is known for its high phenolic content and associated health benefits. The impact of using parameters such as the Ag ion-to-extract ratio and pH on AgNP synthesis was examined. The formation of AgNPs was confirmed using UV-visible spectrophotometry, transmission electron microscopy, and dynamic light scattering. The AgNPs synthesized at a pH of 8 and 1:25 Ag/extract ratio exhibited the lowest particle size and polydispersity index. The AgNPs synthesized with leaf extract (AgKL) were monodisperse and exhibited a smaller hydrodynamic diameter (37 nm) compared to the fruit extract nanoparticles (AgKP), which were polydisperse and larger (147 nm). Phytochemicals in aqueous leaf extract act as effective capping and stabilizing agents, enabling the synthesis of small-sized and homogenous AgNPs, which the fruit extract alone could not achieve. The in vitro bioactivity was evaluated using antioxidant and antibacterial assays and compared with the crude extract. Both the AgNPs and extracts demonstrated strong 2,2 diphenyl-1-picrylhydrazyl radical scavenging activity. However, only AgKL showed excellent antibacterial activity against Gram-negative and Gram-positive bacteria based on minimum inhibitory and bactericidal results. Mixing 50% leaf extract with fruit extract resulted in well-stabilized NPs (AgKPL) with a hydrodynamic diameter of 33.4 nm and superior antibacterial properties. These results indicate that AgKL and AgKPL have significant potential for pharmaceutical and biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.3390/biom14121516DOI Listing

Publication Analysis

Top Keywords

leaf extract
12
fruit extract
12
silver nanoparticles
8
agnps synthesized
8
hydrodynamic diameter
8
agnps
7
extract
7
green synthesis
4
synthesis exell-mediated
4
exell-mediated silver
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!