Banana crop ranks among the most crucial fruit and food crops in tropical and subtropical areas. Despite advancements in production technology, diseases such as cordana leaf spot, caused by , remain a significant challenge, reducing productivity and quality. Traditional chemical controls are becoming less effective due to the development of resistance in target pathogens, which pose significant environmental and health concerns. Consequently, there is growing attention toward the development of biocontrol strategies. Here, we identified a new bacterial strain, 92p, from the rhizosphere soil of banana. We evaluated its ability to suppress the growth of and other fungal pathogens that cause leaf spot disease in bananas. The inhibitory effect of 92p were checked using dual culture assays, microscopic observations, and pot experiments. Furthermore, the biocontrol mechanisms were investigated using whole-genome sequencing and biochemical analyses. The results showed that 92p exhibited significant antifungal activity against and other fungal pathogens, with inhibition rates exceeding 70%. Microscopic examination revealed significant morphological alterations in the hyphae and conidia of the tested pathogens. In pot experiments, 92p effectively reduced the severity of cordana leaf spot, achieving a biocontrol efficacy of 61.55%. Genomic analysis and biochemical tests indicated that 92p produces various antifungal compounds, including lipopeptides (fengycins and surfactins), hydrolytic enzymes (proteases and amylases), and phosphate-solubilizing metabolites. In conclusion, the study highlights that could potentially be used as a potential biological control agent against cordana leaf spot.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/biom14121495 | DOI Listing |
Sci Rep
January 2025
School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
Several mungbean (Vigna radiata (L.) Wilczek) cultivars are susceptible to Cercospora leaf spot (CLS) caused by Cercospora canescens Ellis & Martin, and it is necessary to explore resistance sources and understand resistance mechanisms. However, the CLS resistance mechanisms have not yet been explored.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
Soil salinization and ground water depletion are increasingly constraining crop production. Identifying useful mechanisms of salt tolerance is an important step towards development of salt-tolerant crops. Of particular interest are mechanisms that are present in wild crop relatives, as they may have greater stress tolerance than crop species.
View Article and Find Full Text PDFMicroorganisms
November 2024
Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
Mulberry is an important economic crop in China that is widely planted and has important edible and medicinal value. Anthracnose, a critical leaf disease, severely compromises the yield and quality of mulberry trees. However, there are many kinds of pathogens causing mulberry anthracnose and it is difficult to control.
View Article and Find Full Text PDFBiomolecules
November 2024
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
Banana crop ranks among the most crucial fruit and food crops in tropical and subtropical areas. Despite advancements in production technology, diseases such as cordana leaf spot, caused by , remain a significant challenge, reducing productivity and quality. Traditional chemical controls are becoming less effective due to the development of resistance in target pathogens, which pose significant environmental and health concerns.
View Article and Find Full Text PDFPlant Dis
January 2025
600 Changjiang Road, HarbinHarbin, China, 150030;
Blue honeysuckle (Lonicera caerulea L.) has been widely used in food, medicine, health products, cosmetics, materials, and other products. Between September 2022 and September 2023, a leaf spot disease was observed on approximately 20% of blue honeysuckle plants of the 'Lanjingling' cultivar grown in a 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!