Bacterial infection of the lower respiratory tract frequently occurs in mechanically ventilated patients and may develop into life-threatening conditions. Yet, existing diagnostic methods have moderate sensitivity and specificity, which results in the overuse of broad-spectrum antibiotics administered prophylactically. This study aims to evaluate the suitability of volatile bacterial metabolites for the breath-based test, which is used for diagnosing Ventilator-Associated Pneumonia (VAP). The in vitro experiments with pathogenic bacteria most prevalent in VAP etiology (i.e., , , , and ) were performed to identify bacteria-derived metabolites using a specially designed cultivation system enabling headspace sampling for GC-MS analysis. Thirty-nine compounds were found to be significantly metabolized by tested species and, therefore, selected for monitoring in the exhaled breath of critically ill, mechanically ventilated (MV) patients. The emission of volatiles from medical respiratory devices was investigated to estimate the risk of spoiling breath results with exogenous pollutants. Bacterial metabolites were then evaluated to differentiate VAP patients from non-infected MV controls using Receiver Operating Characteristic (ROC) analysis, with AUC, sensitivity, and specificity calculated. Nine bacterial metabolites that passed verification through a non-parametric ANOVA test for significance and LASSO penalization were identified as key discriminators between VAP and non-VAP patients. The diagnostic model achieved an AUC of 0.893, with sensitivity and specificity values of 87% and 82.4%, respectively, being competitive with traditional methods. Further validation could solidify its clinical utility in critical care settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727074 | PMC |
http://dx.doi.org/10.3390/biom14121480 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemistry, Princeton University, Princeton, NJ 08544.
Chemical communication between marine bacteria and their algal hosts drives population dynamics and ultimately determines the fate of major biogeochemical cycles in the ocean. To gain deeper insights into this small molecule exchange, we screened niche-specific metabolites as potential modulators of the secondary metabolome of the roseobacter, . Metabolomic analysis led to the identification of a group of cryptic lipids that we have termed roseoceramides.
View Article and Find Full Text PDFISME J
January 2025
DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
Soil bacteria are prolific producers of a myriad of biologically active secondary metabolites. These natural products play key roles in modern society, finding use as anti-cancer agents, as food additives, and as alternatives to chemical pesticides. As for their original role in interbacterial communication, secondary metabolites have been extensively studied under in vitro conditions, revealing many roles including antagonism, effects on motility, niche colonization, signaling, and cellular differentiation.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.
We describe a stereoselective synthesis of the dimeric diazofluorene , a potential precursor to the cytotoxic -symmetric bacterial metabolite (-)-lomaiviticin A (). An efficient route was developed to convert the tetracyclic diol to the diketone (five steps, 30% overall). Oxidative dimerization of the enoxysilane provided the -symmetric dimeric diazofluorene in 56% yield and with 15:1:0 diastereoselectivity.
View Article and Find Full Text PDFJ Xenobiot
December 2024
Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
Ibuprofen (IBP) is one of the most consumed drugs in the world. It is only partially removed in wastewater treatment plants (WWTPs), being present in effluent wastewater and sewage sludge, causing the widespread introduction of IBP as an emergent xenobiotic in different environmental compartments. This study describes the use of CSW11, recently described as an IBP degrader, through bioaugmentation processes for the removal of IBP from water under different conditions (additional carbon sources, various concentrations of glucose and IBP).
View Article and Find Full Text PDFFront Immunol
January 2025
State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Neurology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
Background: A stable and reproducible experimental bacterial pneumonia model postintracerebral hemorrhage (ICH) is necessary to help investigating the pathogenesis and novel treatments of Stroke-associated pneumonia (SAP).
Aim: To establish a Gram-negative bacterial pneumonia-complicating ICH rat model and an acute lung injury (ALI)-complicating ICH rat model.
Methods: We established two standardized models of post-ICH pneumonia by nasal inoculation with () or intratracheal inoculation with lipopolysaccharide (LPS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!