Despite significant progress in the field of clinical oncology in terms of diagnostic and treatment methods, the results of anticancer therapy are still not fully satisfactory, especially due to limited response and high toxicity. This has forced the need for further research to finding alternative ways to improve success rates in oncological treatment. A good solution to this problem in the context of rapidly obtaining an effective drug that works on multiple levels of cancer and is also safe is the global strategy of repurposing an existing drug. Research into other applications of an existing drug enables a precise assessment of its possible mechanisms of action and, consequently, the broadening of therapeutic indications. This strategy is also supported by the fact that most non-oncological drugs have pleiotropic effects, and most of the diseases for which they were originally intended are multifactorial, which in turn is a very desirable phenomenon due to the heterogeneous and multifaceted biology of cancer. In this review, we will mainly focus on the anticancer potential of H1 antihistamines, especially the new generation that were not originally intended for cancer therapy, to highlight the relevant signaling pathways and discuss the properties of these agents for their judicious use based on the characteristic features of cancer.

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers16244253DOI Listing

Publication Analysis

Top Keywords

existing drug
8
originally intended
8
cancer
5
antihistamines-promising candidates
4
candidates repurposing
4
repurposing context
4
context development
4
development therapeutic
4
therapeutic approaches
4
approaches cancer
4

Similar Publications

Background: Pharmacoepidemiologic studies assessing drug effectiveness for Alzheimer's disease and related dementias (ADRD) are increasingly popular given the critical need for effective therapies for ADRD. To meet the urgent need for robust dementia ascertainment from real-world data, we aimed to develop a novel algorithm for identifying incident and prevalent dementia in claims.

Method: We developed algorithm candidates by different timing/frequency of dementia diagnosis/treatment to identify dementia from inpatient/outpatient/prescription claims for 6,515 and 3,997 participants from Visits 5 (2011-2013; mean age 75.

View Article and Find Full Text PDF

Background: Availability of amyloid modifying therapies will dramatically increase the need for disclosure of Alzheimer's disease (AD) related genetic and/or biomarker test results. The 21st Century Cares Act requires the immediate return of most medical test results, including AD biomarkers. A shortage of genetic counselors and dementia specialists already exists, thus driving the need for scalable methods to responsibly communicate test results.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Background: The ability to monitor cognitive trajectories over the course of trials can provide valuable insights into treatment efficacy. However, existing trial methods are limited in monitoring cognition in real-time and at high frequencies. Gameplay-based assessments hold promise as complementary cognitive tools.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China;, Beijing, China.

Background: Individuals with type 2 diabetes mellitus (T2DM) face an increased risk of dementia. Recent discoveries indicate that SGLT2 inhibitors, a newer class of anti-diabetic medication, exhibit beneficial metabolic effects beyond glucose control, offering a potential avenue for mitigating the risk of Alzheimer's disease (AD). However, limited evidence exists regarding whether the use of SGLT2 inhibitors effectively reduces the risk of AD.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A., Philadelphia, PA, USA.

Background: This study investigates the therapeutic versus side effects of intranasal lithium chloride (LiCl) in Ryanodex formulation vehicle (RFV) to inhibit inflammation and pyroptosis and to ameliorate on cognitive dysfunction and depressive behavior in 5XFAD mice.

Method: 5XFAD and wild type (WT) B6SJLF1/J mice were treated with intranasal or oral LiCl (3 mM/kg) dissolved in RFV starting at 2 or 9 months old and the continuous treatment lasted for 12 weeks. Behavior was examined for depression, cognition, olfaction, and motor function at the ages of 5 or 12 months.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!