A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reduced Breast and Ovarian Cancer Through Targeted Genetic Testing: Estimates Using the NEEMO Microsimulation Model. | LitMetric

The effectiveness and cost-effectiveness of genetic testing for hereditary breast and ovarian cancer largely rely on the identification and clinical management of individuals with a pathogenic variant prior to developing cancer. Simulation modelling is commonly utilised to evaluate genetic testing strategies due to its ability to synthesise collections of data and extrapolate over long time periods and large populations. Existing genetic testing simulation models use simplifying assumptions for predictive genetic testing and risk management uptake, which could impact the reliability of their estimates. Our objective was to develop a microsimulation model that accurately reflects current genetic testing and subsequent care in Australia, directly incorporating the dynamic nature of predictive genetic testing within families and adherence to cancer risk management recommendations. The populatioN gEnEtic testing MOdel (NEEMO) is a population-level microsimulation that incorporates a detailed simulation of individuals linked within five-generation family units. The genetic component includes heritable high- and moderate-risk monogenic gene variants, as well as polygenic risk. Interventions include clinical genetic services, breast screening, and risk-reducing surgery. Model validation is described, and then to illustrate a practical application, NEEMO was used to compare clinical outcomes for four genetic testing scenarios in patients newly diagnosed with breast cancer (BC) and their relatives: (1) no genetic testing, (2) current practice, (3) optimised referral for genetic testing, and (4) genetic testing for all BC. NEEMO accurately estimated genetic testing utilisation according to current practice and associated cancer incidence, pathology, and survival. Predictive testing uptake in first- and second-degree relatives was consistent with known prospective genetic testing data. Optimised genetic referral and expanded testing prevented up to 9.3% of BC and 4.1% of ovarian cancers in relatives of patients with BC. Expanding genetic testing eligibility to all BC patients did not lead to improvement in life-years saved in at-risk relatives compared to optimised referral of patients eligible for testing under current criteria. NEEMO is an adaptable and validated microsimulation model for evaluating genetic testing strategies. It captures the real-world uptake of clinical and predictive genetic testing and recommended cancer risk management, which are important considerations when considering real-world clinical and cost-effectiveness.

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers16244165DOI Listing

Publication Analysis

Top Keywords

genetic testing
68
genetic
20
testing
20
microsimulation model
12
predictive genetic
12
risk management
12
breast ovarian
8
ovarian cancer
8
testing strategies
8
cancer risk
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!