From Spent Black and Green Tea to Potential Health Boosters: Optimization of Polyphenol Extraction and Assessment of Their Antioxidant and Antibacterial Activities.

Antioxidants (Basel)

Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box 115020, Beirut 1107 2809, Lebanon.

Published: December 2024

Tea, one of the most popular beverages worldwide, generates a substantial amount of spent leaves, often directly discarded although they may still contain valuable compounds. This study aims to optimize the extraction of polyphenols from spent black tea (SBT) and spent green tea (SGT) leaves while also exploring their antioxidant and antibacterial properties. Response surface methodology was utilized to determine the optimal experimental conditions for extracting polyphenols from SBT and SGT. The total phenolic content (TPC) was quantified using the Folin-Ciocalteu method, while antioxidant activity was evaluated through the DPPH assay. Antibacterial activity was assessed using the disk diffusion method. Additionally, high-performance liquid chromatography (HPLC) was employed to analyze the phytochemical profiles of the SBT and SGT extracts. Optimal extraction for SBT achieved 404 mg GAE/g DM TPC and 51.5% DPPH inhibition at 93.64 °C, 79.9 min, and 59.4% ethanol-water. For SGT, conditions of 93.63 °C, 81.7 min, and 53.2% ethanol-water yielded 452 mg GAE/g DM TPC and 78.3% DPPH inhibition. Both tea extracts exhibited antibacterial activity against Gram-positive bacteria, with SGT showing greater efficacy against and slightly better inhibition of compared to SBT. No activity was observed against the Gram-negative bacteria and . HPLC analysis revealed hydroxybenzoic acid as the main phenolic compound in SBT (360.7 mg/L), while rutin was predominant in SGT (42.73 mg/L). The optimized phenolic-rich extracts of SBT and SGT demonstrated promising antioxidant and antibacterial potential, making them strong candidates for use as natural health boosters in food products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673901PMC
http://dx.doi.org/10.3390/antiox13121588DOI Listing

Publication Analysis

Top Keywords

antioxidant antibacterial
12
sbt sgt
12
spent black
8
green tea
8
health boosters
8
antibacterial activity
8
gae/g tpc
8
dpph inhibition
8
sbt
7
sgt
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!