A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nrf2-Independent Anti-Inflammatory Effects of Dimethyl Fumarate: Challenges and Prospects in Developing Electrophilic Nrf2 Activators for Neurodegenerative Diseases. | LitMetric

The NF-E2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway is a potential therapeutic target for central nervous system diseases. This review emphasizes the role of oxidative stress and neuroinflammation in neurodegenerative diseases, highlighting the therapeutic potential of Nrf2 activators such as dimethyl fumarate (DMF). DMF, initially administered for treating psoriasis, has demonstrated efficacy in multiple sclerosis and is metabolized to monomethyl fumarate, which may exert significant therapeutic effects. DMF activates the Nrf2-ARE pathway, and recent studies have indicated that its anti-inflammatory effects occur through Nrf2-independent mechanisms. Electrophilic Nrf2 activators, such as DMF, covalently bind to cysteine residues in proteins and modulate their function. We discuss the implications of cysteine residue modifications by DMF, which may cause both therapeutic benefits and potential off-target effects. Furthermore, we propose a chemical proteomics-based drug discovery approach to achieve desired therapeutic effects by selectively covalently modifying cysteines in target proteins. These findings advocate for a broader understanding of the Nrf2-independent mechanisms of electrophilic Nrf2 activators, thereby improving drug discovery strategies that target neurodegenerative diseases while minimizing toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.3390/antiox13121527DOI Listing

Publication Analysis

Top Keywords

nrf2 activators
16
electrophilic nrf2
12
neurodegenerative diseases
12
anti-inflammatory effects
8
dimethyl fumarate
8
therapeutic effects
8
nrf2-independent mechanisms
8
mechanisms electrophilic
8
drug discovery
8
effects
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!