Antibodies Against Anti-Oxidant Enzymes in Autoimmune Glomerulonephritis and in Antibody-Mediated Graft Rejection.

Antioxidants (Basel)

Unit of Nephrology, Dialysis and Transplantation and Laboratory of Molecular Nephrology, Core Facilities-Proteomics Laboratory, 16147 Genoa, Italy.

Published: December 2024

Historically, oxidants have been considered mechanisms of glomerulonephritis, but a direct cause-effect correlation has never been demonstrated. Several findings in the experimental model of autoimmune conditions with renal manifestations point to the up-regulation of an oxidant/anti-oxidant system after the initial deposition of autoantibodies in glomeruli. Traces of oxidants in glomeruli cannot be directly measured for their rapid metabolism, while indirect proof of their implications is derived from the observation that Superoxide Oxidase 2 (SOD2) is generated by podocytes after autoimmune stress. The up-regulation of other anti-oxidant systems takes place as well. Here, we discuss the concept that a second wave of antibodies targeting SOD2 is generated in autoimmune glomerulonephritis and may negatively influence the clinical outcome. Circulating and renal deposits of anti-SOD2 antibodies have been detected in patients with membranous nephropathy and lupus nephritis, two main examples of autoimmune disease of the kidney, which correlate with the clinical outcome. The presence of anti-SOD2 antibodies in circulation and in the kidney has been interpreted as a mechanism which modifies the normal tissue response to oxidative stress. Overall, these findings repropose the role of the oxidant/anti-oxidant balance in autoimmune glomerulonephritis. The same conclusion on the oxidant/anti-oxidant balance may be proposed in renal transplant. Patients receiving a renal graft may develop antibodies specific for Glutathione Synthetase (GST), which modulates the amount of GST disposable for rapid scavenging of reactive oxygen species (ROS). The presence of anti-GST antibodies in serum is a major cause of rejection. The perspective is to utilize molecules with known anti-oxidant effects to modulate the anti-oxidative response in autoimmune pathology of the kidney. A lot of molecules with known anti-oxidant effects can be utilized, many of which have already been proven effective in animal models of autoimmune glomerulonephritis. Many molecules with anti-oxidant activity are natural products; in some cases, they are constituents of diets. Owing to the simplicity of these drugs and the absence of important adverse effects, many anti-oxidants could be directly utilized in human beings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726969PMC
http://dx.doi.org/10.3390/antiox13121519DOI Listing

Publication Analysis

Top Keywords

autoimmune glomerulonephritis
16
molecules anti-oxidant
12
autoimmune
8
sod2 generated
8
clinical outcome
8
anti-sod2 antibodies
8
oxidant/anti-oxidant balance
8
anti-oxidant effects
8
antibodies
6
glomerulonephritis
5

Similar Publications

Engineered antigen-specific T regulatory cells suppress autoreactivity to the anti-glomerular basement membrane disease antigen.

Kidney Int

January 2025

Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Australia. Electronic address:

Anti-glomerular basement membrane (anti-GBM) disease is accompanied by insufficient antigen-specific T regulatory cells (Tregs) and clonally expanded antigen-specific T conventional cells (Tconvs). In particular, this applied to the immunodominant T cell auto- epitope of type IV collagen, α3(IV)NC1135-145 , presented by HLA-DR15. Here, we investigated whether Tregs engineered to express GBM-T cell receptors (TCR) specific for α3(IV)NC1135- 145 better suppress autoimmunity.

View Article and Find Full Text PDF

Pharyngitis is commonly caused by the gram positive bacteria, streptococcus. Given the potential morbid complications of untreated streptococcal pharyngitis, antibiotics are critical. One of the rarer complications is pulmonary-renal syndrome (PRS), defined as rapidly progressive glomerulonephritis and diffuse alveolar hemorrhage.

View Article and Find Full Text PDF

Interleukin-32 positive immune and resident cells in kidney samples from lupus patients: a pilot study.

Front Immunol

January 2025

Rheumatology Unit, Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, "Sapienza" University of Rome, Rome, Italy.

Introduction: Lupus nephritis (LN), caused by immune complexes produced or deposited from the bloodstream, is one of the most severe features of Systemic Lupus Erythematosus (SLE) leading to an increased morbidity and mortality. Toll like receptors (TLRs), such as TLR3, TLR7 and TLR9, may play a key role in its pathogenesis. Interleukin-32 (IL-32), a cytokine involved in both innate and adaptive immune responses, has been widely considered in autoimmune-inflammatory rheumatic diseases.

View Article and Find Full Text PDF

Fibrillary glomerulonephritis (FGN) is a rare glomerular disease characterized by the deposition of fibrils within the mesangium and glomerular basement membrane. Most cases are idiopathic, but it can be linked to autoimmune diseases, neoplasms, and infections. There is limited evidence on the best treatment approach, and many patients progress to end-stage kidney disease.

View Article and Find Full Text PDF

This article provides an overview of treatment approaches for chronic kidney disease (CKD) in patients with IgA nephropathy (IgAN). IgAN is the most common primary glomerulonephritis and results from an autoimmune reaction to aberrantly glycosylated immunoglobulin A (IgA) antibodies. Although historically considered largely benign, it is now recognized that a significant percentage of patients develop dialysis-dependent kidney disease over the years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!