Age-dependent loss of muscle mass and function is associated with oxidative stress. DJ-1/ acts as an antioxidant through multiple signalling pathways. DJ-1-knockout zebrafish show a decline in swimming performance and loss of weight gain between 6 and 9 months of age. Here, we address the degree to which this is associated with muscle degeneration and identify molecular changes preceding dysregulation of muscle performance. Loss of DJ-1 reduced the skeletal muscle fibre cross-section area. The highly mitochondrial-dependent red slow muscle was more affected than the white muscle, and degeneration of sub-sarcolemma red muscle mitochondria was observed. Using TandemMassTag-based quantitative proteomics, we identified a total of 3721 proteins in the multiplex sample of 4 and 12-month-old muscles. A total of 68 proteins, mainly associated with inflammation and mitochondrial function, were dysregulated in the young DJ-1-null adults, with Annexin A3, Sphingomyelin phosphodiesterase acid-like 3B, Complement C3a, and 2,4-dienoyl CoA reductase 1 being the most affected. The loss of DJ-1 also accelerated molecular features associated with sarcopenia, such as a decrease in the NAD/NADH ratio and a reduction in Prostaglandin reductase 2 and Cytosolic glycerol-3-phosphate dehydrogenase levels. In view of the experimental power of zebrafish, the DJ-1-null zebrafish makes a valuable model for understanding the connection between oxidative stress and age-dependent muscle loss and function.

Download full-text PDF

Source
http://dx.doi.org/10.3390/antiox13121509DOI Listing

Publication Analysis

Top Keywords

muscle
8
oxidative stress
8
performance loss
8
muscle degeneration
8
loss dj-1
8
loss
5
accelerated sarcopenia
4
sarcopenia phenotype
4
phenotype dj-1/-knockout
4
zebrafish
4

Similar Publications

Background: Regeneration is the replacement of lost or damaged tissue with a functional copy. In axolotls and zebrafish, regeneration involves stem cells produced by de-differentiation. These cells form a growth zone which expresses developmental patterning genes at its apex.

View Article and Find Full Text PDF

Background: Skeletal muscle injury caused by excessive exercise is one of the most commonly seen clinical diseases. It is indispensable to explore drugs for treating and relieving skeletal muscle injury. Gallic acid (GA) is a polyphenolic extract that has anti-inflammatory and antioxidant biological activities.

View Article and Find Full Text PDF

Low L3 skeletal muscle index and endometrial cancer: a statistic pooling analysis.

BMC Cancer

January 2025

Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, China.

Objective: Sarcopenia, a condition characterized by the gradual decline of muscle mass, strength, and function, is a key indicator of malnutrition in cancer patients and has been linked to poor prognoses in oncology. Sarcopenia is commonly assessed by measuring the skeletal muscle index (SMI) of the third lumbar spine (L3) using computed tomography (CT). This meta-analysis aimed to explore the relationship between low SMI and clinicopathological features, as well as prognosis, in individuals with endometrial cancer (EC).

View Article and Find Full Text PDF

Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA).

View Article and Find Full Text PDF

Activators of the 26S proteasome when protein degradation increases.

Exp Mol Med

January 2025

Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.

In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!