Peanut ( L.) is an oilseed crop grown worldwide. Flavonoids have profound benefits for plant growth and development because of their powerful antioxidant properties. Seed vigor is an important indicator of seed quality. However, how flavonoids impact seed vigor formation in large-seed peanuts is still poorly understood. Here, we profiled flavonoids, phytohormones, and transcriptomes of developing seeds of large-seed peanut varieties with low (ZP06) and high (H8107) seed vigor. A total of 165 flavonoids were identified, 51 of which were differentially accumulated in ZP06 and H8107. Lower levels of dihydromyricetin (0.28 times) and hesperetin-7-O-glucoside (0.26 times) were observed in ZP06 seeds than in H8107. All flavonoid biosynthesis structural genes were down-regulated in ZP06. The different hormone levels found in ZP06 and H8107 seeds could be associated with the expression of flavonoid biosynthesis genes via MYB and bHLH transcription factors. Dihydromyricetin could relate to ZP06's poor seed vigor by impacting its seed antioxidant properties. Thus, the presence of flavonoids in large-seed peanuts could contribute to their physiological quality and germination potential through controlling the accumulation of reactive oxygen species to improve seed antioxidant properties.

Download full-text PDF

Source
http://dx.doi.org/10.3390/antiox13121497DOI Listing

Publication Analysis

Top Keywords

seed vigor
20
antioxidant properties
16
seed antioxidant
12
seed
9
large-seed peanuts
8
zp06 h8107
8
flavonoid biosynthesis
8
vigor
5
flavonoids
5
zp06
5

Similar Publications

Salt stress is one of the principal abiotic stresses limiting agricultural production and seriously inhibiting seed germination rates. This study selected the salt-tolerant rice variety HD961 and the salt-sensitive rice variety 9311 as experimental materials to investigate the physiological and metabolic effects of exogenous Spd seed priming on rice seeds and seedlings under NaCl stress. The experiment involved treating rice seeds with 0.

View Article and Find Full Text PDF

Metabolomic and Transcriptomic Analysis Reveals Flavonoid-Mediated Regulation of Seed Antioxidant Properties in Peanut Seed Vigor.

Antioxidants (Basel)

December 2024

College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou 450002, China.

Peanut ( L.) is an oilseed crop grown worldwide. Flavonoids have profound benefits for plant growth and development because of their powerful antioxidant properties.

View Article and Find Full Text PDF

Integrated removal of chromium, lead, and cadmium using nano-zero-valent iron-supported biochar: Mechanistic insights and eco-toxicity assessment.

Ecotoxicol Environ Saf

January 2025

College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China. Electronic address:

The contamination of water and soil by heavy metals (HMs) is a global issue that should be given much more concern. Modified nano-zero-valent iron (nZVI) composites offer an effective strategy for HMs remediation, but few studies have focused on removing coexisting HMs and the eco-toxicity of the composite. In this study, corn straw biochar-supported nZVI composites (nZVI-BC) were synthesized, characterized and used for the removal of Cr, Pb, and Cd in single and multi-system at different composites dosages, metal concentrations, and solution pH.

View Article and Find Full Text PDF

Morphological variation of Ficus johannis subsp. afghanistanica (Warb.) Browicz in Sistan-va-Baluchestan province, Iran.

BMC Plant Biol

January 2025

Republic of Türkiye, Ministry of Agriculture and Forestry, General Directorate of Agricultural Research and Policies, Hatay Olive Research Institute Directorate, Hassa Station, Hassa, 31700, Hatay, Türkiye.

Background: Ficus johannis subsp. afghanistanica (Warb.) Browicz is an important plant species belonging to the Moraceae family and is part of the Ficus genus.

View Article and Find Full Text PDF
Article Synopsis
  • Seeds are vital for agricultural success, influencing seedling quality and crop yields, making accurate vigor assessment essential for productivity.
  • The study seeks to create a non-destructive method to evaluate maize seed vigor, overcoming the limitations of traditional testing methods, by using a large set of maize inbred lines and advanced technologies like machine vision and hyperspectral imaging.
  • The findings indicate that machine vision is the most effective method for seed vigor detection with about 90% accuracy, and it also uncovers key genetic and metabolic traits linked to seed germination, providing insights into improving seed vigor in maize.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!