The Response Mechanism of the cbbM Carbon Sequestration Microbial Community in the Alpine Wetlands of Qinghai Lake to Changes in Precipitation.

Biology (Basel)

Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China.

Published: December 2024

The dramatic changes in precipitation patterns on the Tibetan Plateau affected the carbon-sequestering microbial communities within wetland ecosystems, which were closely related to the responses and adaptation mechanisms of alpine wetland ecosystems to climate change. This study focused on wetland soils subjected to different precipitation gradient treatments and employed high-throughput sequencing technology to analyze the soil cbbM carbon-sequestering microbial communities. The results indicated that Proteobacteria were the dominant microbial community responsible for carbon sequestration in the Wayan Mountain wetland. A 50% increase in precipitation significantly raised the soil moisture content, while a 50% reduction and a 25% increase in precipitation notably enhanced the total soil carbon content. The 25% reduction in precipitation increased the differences in microbial community composition, whereas both the 50% increase and the 50% reduction in precipitation decreased these differences. The soil pH and temperature had the most significant impact on the carbon-sequestering microbial communities. In conclusion, changes in precipitation affect the cbbM carbon sequestration characteristics of soil microbial communities, and a moderate reduction in water input benefited carbon sequestration in wetlands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673386PMC
http://dx.doi.org/10.3390/biology13121090DOI Listing

Publication Analysis

Top Keywords

carbon sequestration
16
microbial communities
16
microbial community
12
changes precipitation
12
carbon-sequestering microbial
12
cbbm carbon
8
precipitation
8
wetland ecosystems
8
50% increase
8
increase precipitation
8

Similar Publications

Investigating the effects of urbanization at the county level on the balance of the carbon budget is essential for progress toward achieving "dual carbon" objectives at the county scale. Based on land use and economic data, this study elucidates the spatiotemporal evolution of urbanization and carbon budget balance ratio in 84 counties in Jiangxi Province from 1980 to 2020. Optimal geographic detectors and geographically weighted random forests were used to explore the impact of urbanization on the carbon budget balance ratio.

View Article and Find Full Text PDF

The effective collection of interfacial tribo-charges and an increase in load voltage are two essential factors that improve the output energy of triboelectric nanogenerators. However, some tribo-charges are hardly collected through one or multiple integrated side electrodes based on corona discharge, and their load voltages are limited by air breakdown in adjacent electrodes. In this study, a dynamic quasi-dipole potential distribution model is proposed to systematically reveal the mechanisms of interfacial tribo-charge loss.

View Article and Find Full Text PDF

Multifaceted Links Between Microbial Carbon Use Efficiency and Soil Organic Carbon Sequestration.

Glob Chang Biol

January 2025

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China.

Conceptual framework to unlock the mechanisms for microbial carbon use efficiency and SOC formation.

View Article and Find Full Text PDF

Long-term rice-crab coculturing leads to changes in soil microbial communities.

Front Microbiol

January 2025

Liaoning Academy of Agricultural Sciences, Shenyang, China.

Purpose: In order to investigate the effects of a rice-crab coculture mode and its duration on the richness and diversity of the soil microbial community.

Method: Soil from long-term rice-crab coculture mode (MY), newly established rice-crab coculture mode (OY) and rice monoculture mode (N) were used to measured soil physicochemical properties, enzyme activity and 16S and ITS soil microbial communities.

Results: The results revealed that in terms of mode, the MBC, MBN and CAT of OY were significantly greater than those of N by 10.

View Article and Find Full Text PDF

RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (RUBISCO) is the most abundant enzyme and CO2 bio-sequestration system on Earth. Its in vivo activity is usually determined by 14CO2 incorporation into 3-phosphoglycerate (3PGA). However, the radiometric analysis of 3PGA does not distinguish carbon positions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!