Pathogen-induced fruit decay is a significant threat to the kiwifruit industry, leading to considerable economic losses annually. The cell-wall-degrading enzymes (CWDEs) secreted by these pathogens are crucial for penetrating the cell wall and accessing nutrients. Among them, species are recognized as major causal agents of soft rot in kiwifruit, yet their pathogenic mechanisms are not well understood. In this study, we explored the production of various CWDEs secreted by Z1-1N, including polygalacturonase (PG), polymethylgalacturonase (PMG), polygalacturonic acid transeliminase (PGTE), pectin methyltranseliminase (PMTE), endoglucanase (Cx), and β-glucosidase (β-glu), both in liquid cultures and within infected kiwifruit tissues. Our findings revealed significant activities of two pectinases (PG and PMG) and cellulases (Cx and β-glu) in the infected tissues. In contrast, very low levels of PMTE and PGTE activities were observed under the same conditions. When orange pectin served as the carbon source, PG and PMG showed notable activities, while PMTE and PGTE remained inactive. Moreover, the activities of Cx and β-glu significantly decreased by more than 63 times in the liquid medium with carboxymethyl cellulose (CMC) as the carbon source compared to their levels in infected kiwifruit. A further analysis indicated that the necrotic lesions produced by pectinase extracts were larger than those produced by cellulase extracts. Notably, four enzymes-PG, PMG, Cx, and β-glu-exhibited high activities on the third or fourth day post-infection with Z1-1N. These results suggest that Z1-1N secretes a range of CWDEs that contribute to kiwifruit decay by enhancing the activities of PG, PMG, Cx, and β-glu. This study sheds light on the pathogenicity of in kiwifruit and highlights the importance of these enzymes in the decay process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/biology13121006 | DOI Listing |
Biology (Basel)
December 2024
Key Laboratory City for Study and Utilization of Ethnic Medicinal Plant Resources of Western Guizhou Province, Liupanshui Normal University, Liupanshui 553004, China.
Pathogen-induced fruit decay is a significant threat to the kiwifruit industry, leading to considerable economic losses annually. The cell-wall-degrading enzymes (CWDEs) secreted by these pathogens are crucial for penetrating the cell wall and accessing nutrients. Among them, species are recognized as major causal agents of soft rot in kiwifruit, yet their pathogenic mechanisms are not well understood.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt.
Sheath blight, caused by AG1 IA, is a challenging disease of rice worldwide. In the current study, nine isolates, within the anastomosis group AG-1 IA, were isolated, characterized based on their macroscopic and microscopic features, as well as their ability to produce cell wall degrading enzymes (CWDEs), and further molecularly identified via ITS sequencing. Although all isolates were pathogenic and produced typical sheath blight symptoms the susceptible rice cultivar, Sakha 101, AG1 IA -isolate SHBP9 was the most aggressive isolate.
View Article and Find Full Text PDFPhytopathology
January 2025
Centro de Investigaciones Biologicas, Departament of Cellular and Molecular Biology, Ramiro de Maeztu, 9, Madrid, Madrid, Madrid, Spain, 28040.
Brown rot is a disease that affects stone and pome fruit crops worldwide. It is caused by fungal members of the genus , mainly , and . This study presents evidence that, despite having a very similar battery of Cell Wall Degrading Enzymes (CWDEs), the three species behave differently during the early stages of infection, suggesting differences at the regulatory level, which could also explain the differences in host preference among the three species.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
is one of the fungi that cause plant diseases. It damages plants by secreting large amounts of oxalic acid and cell wall-degrading enzymes. To meet this challenge, we designed a new pH/enzyme dual-responsive nanopesticide Pro@ZnO@Pectin (PZP).
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.
This study investigated the expression profiles of microRNA-like RNAs (milRNAs) in (), a key pathogen causing Apple replant disease (ARD), across spore to mycelium formation stages. Using small RNA sequencing (sRNA-seq) and bioinformatics, we identified and analyzed milRNAs, revealing their targeting of 2364 mRNAs involved in 20 functional categories, including metabolic and cellular processes, based on gene ontology (GO) analysis. An analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that these mRNAs are related to carbohydrate and amino acid metabolism pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!