The tumor microenvironment (TME) is a dynamic and complex medium that plays a central role in cancer progression, metastasis, and treatment resistance. Among the key elements of the TME, cancer-associated fibroblasts (CAFs) are particularly important for their ability to remodel the extracellular matrix, promote angiogenesis, and suppress anti-tumor immune responses. Fibroblast activation protein (FAP), predominantly expressed by CAFs, has emerged as a promising target in both cancer diagnostics and therapeutics. In nuclear medicine, targeting FAP offers new opportunities for non-invasive imaging using radiolabeled fibroblast activation protein inhibitors (FAPIs). These FAP-specific radiotracers have demonstrated excellent tumor detection properties compared to traditional radiopharmaceuticals such as [F]FDG, especially in cancers with low metabolic activity, like liver and biliary tract tumors. The most recent FAPI derivatives not only enhance the accuracy of positron emission tomography (PET) imaging but also hold potential for theranostic applications by delivering targeted radionuclide therapies. This review examines the biological underpinnings of FAP in the TME, the design of FAPI-based imaging agents, and their evolving role in cancer diagnostics, highlighting the potential of FAP as a target for precision oncology.

Download full-text PDF

Source
http://dx.doi.org/10.3390/biology13120967DOI Listing

Publication Analysis

Top Keywords

fibroblast activation
12
activation protein
12
tumor microenvironment
8
nuclear medicine
8
imaging agents
8
role cancer
8
cancer diagnostics
8
unveiling tumor
4
microenvironment fibroblast
4
protein targeting
4

Similar Publications

Background: Cardiac fibrosis plays a critical role in the progression of various forms of heart disease, significantly increasing the risk of sudden cardiac death. However, currently, there are no therapeutic strategies available to prevent the onset of cardiac fibrosis.

Methods And Results: Here, biomimetic ATP-responsive nanozymes based on genetically engineered cell membranes are adapted to specifically recognize activated cardiac fibroblasts (CFs) for the treatment of cardiac fibrosis.

View Article and Find Full Text PDF

With the advancement of biotechnology in the marine industry, an increasing utilization of marine ingredients in skincare products has been observed in recent years. Encapsulating Artemia franciscana extract and its derivatives in a novel phospholipid vesicle called hyalurosome presents innovative strategies for drug delivery systems and anti-aging products. In this study, we developed nano hyalurosomes containing Artemia franciscana active components.

View Article and Find Full Text PDF

Pulmonary fibrosis is a pathological manifestation that occurs upon lung injury and subsequence aberrant repair with poor prognosis. However, current treatment is limited and does not distinguish different disease stages. Here, we aimed to study the differential functions of Axl, a receptor tyrosine kinase expressing on both macrophages and fibroblasts, in the whole course of pulmonary fibrosis.

View Article and Find Full Text PDF

In the current study, a novel series of 1,2,4-oxadiazoles were designed, synthesized, and evaluated for their biological activities. A cell-based antiproliferative screening was accomplished on the newly synthesized 1,2,4-oxadiazoles along with our previously reported aryl(alkyl)azoles (AAAs) containing middle heterocyclic cores thiazole and oxazole. Among the tested compounds, naphthyl- thiazoles demonstrated higher antiproliferative activity and B3 was identified as the most potent compound with IC values in the range of 2.

View Article and Find Full Text PDF

Japanese Leaf Burdock Extract Inhibits Adipocyte Differentiation in 3T3-L1 Cells.

Plant Foods Hum Nutr

January 2025

Department of Food Science and Nutrition, School of Food Science and Nutrition, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan.

Burdock, Arctium lappa Linn. (Asteraceae), is cultivated in East Asian for its edible roots, and its seeds are used in a herbal medicine. Burdock seeds and roots exhibit anti-adipogenic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!