A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genome-Wide Association Study and Genomic Prediction of Soft Wheat End-Use Quality Traits Under Post-Anthesis Heat-Stressed Conditions. | LitMetric

Wheat end-use quality is an important component of a wheat breeding program. Heat stress during grain filling impacts wheat quality traits, making it crucial to understand the genetic basis of wheat quality traits under post-anthesis heat stress. This study aimed to identify the genomic regions associated with wheat quality traits using genome-wide association studies (GWASs) and evaluate the prediction accuracy of different genomic selection (GS) models. A panel of 236 soft red facultative wheat genotypes was evaluated for end-use quality traits across four heat-stressed environments over three years. Significant phenotypic variation was observed across environments for traits such as grain yield (GY), grain protein (GP), grain hardness (GH), and flour yield (AFY). Heritability estimates ranged from 0.52 (GY) to 0.91 (GH). The GWASs revealed 136 significant marker-trait associations (MTAs) across all 21 chromosomes, with several MTAs located within candidate genes involved in stress responses and quality traits. Genomic selection models showed prediction accuracy values up to 0.60, with within-environment prediction outperforming across-environment prediction. These results suggest that integrating GWAS and GS approaches can enhance the selection of wheat quality traits under heat stress, contributing to the development of heat-tolerant varieties.

Download full-text PDF

Source
http://dx.doi.org/10.3390/biology13120962DOI Listing

Publication Analysis

Top Keywords

quality traits
28
wheat quality
16
end-use quality
12
heat stress
12
genome-wide association
8
wheat
8
wheat end-use
8
quality
8
traits
8
traits post-anthesis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!