Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Monitoring the body condition of dairy cows is essential for ensuring their health and productivity, but traditional BCS methods-relying on visual or tactile assessments by skilled personnel-are subjective, labor-intensive, and impractical for large-scale farms. To overcome these limitations, we present BCS-YOLO, a lightweight and automated BCS framework built on YOLOv8, which enables consistent, accurate scoring under complex conditions with minimal computational resources. BCS-YOLO integrates the Star-EMA module and the Star Shared Lightweight Detection Head (SSLDH) to enhance the detection accuracy and reduce model complexity. The Star-EMA module employs multi-scale attention mechanisms that balance spatial and semantic features, optimizing feature representation for cow hindquarters in cluttered farm environments. SSLDH further simplifies the detection head, making BCS-YOLO viable for deployment in resource-limited scenarios. Additionally, channel-based knowledge distillation generates soft probability maps focusing on key body regions, facilitating effective knowledge transfer and enhancing performance. The results on a public cow image dataset show that BCS-YOLO reduces the model size by 33% and improves the mean average precision (mAP) by 9.4%. These advances make BCS-YOLO a robust, non-invasive tool for consistent and accurate BCS in large-scale farming, supporting sustainable livestock management, reducing labor costs, enhancing animal welfare, and boosting productivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ani14243668 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!