A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Promising Probiotic Candidates for Sustainable Aquaculture: An Updated Review. | LitMetric

Promising Probiotic Candidates for Sustainable Aquaculture: An Updated Review.

Animals (Basel)

Faculty of Bioscience, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, 9019 Tromsø, Norway.

Published: December 2024

With the intensification of aquaculture to meet the rising demands of fish and shellfish, disease outbreaks during the larval and adult stages are a major challenge faced by aqua culturists. As the prophylactic use of vaccines and antibiotics has several limitations, research is now focused on sustainable alternatives to vaccines and antibiotics, e.g., medicinal plants, probiotics, postbiotics, prebiotics, and synbiotics, as promising candidates to strengthen the immune response of fish and shellfish and to control disease outbreaks. With respect to probiotics, numerous studies are available revealing their health-promoting and beneficial impacts in aquaculture. However, most studies focus on and species. Keeping in view the positive effects of probiotic lactic acid bacteria in aquaculture, researchers are now looking for other probiotic bacteria that can be used in aquaculture. Recently, many non-lactic acid bacteria (non-LAB), which are mainly host-associated, have been reported to reveal beneficial effects in fish and shellfish aquaculture. The main non-LAB probiotic genera are , , , , , , , , , , , and . Despite the promising effects of non-LAB probiotics, comparably, there is limited available information in this context. This review focuses only on probiotic strains that are non-LAB, mostly isolated from the host digestive tract or rearing water, and discusses their beneficial effects in fish and shellfish aquaculture. This review will provide detailed information on the use of various non-LAB bacteria and provide a roadmap to future studies on new probiotics for sustainable aquaculture.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ani14243644DOI Listing

Publication Analysis

Top Keywords

fish shellfish
16
aquaculture
8
sustainable aquaculture
8
disease outbreaks
8
vaccines antibiotics
8
acid bacteria
8
bacteria aquaculture
8
beneficial effects
8
effects fish
8
shellfish aquaculture
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!