The aim of this preliminary study was to morphologically and dimensionally characterize the cat's olfactory bulb in the sagittal plane and to establish potential relationships with the cranial conformation, based on the study of in vivo MRI images. Midsagittal and transverse T2-weighted images of the head of 40 cats subjected to MRI were selected. For each animal, the skull index was calculated to classify the cranial conformation. Then, for the olfactory bulb, the angle was calculated, the orientation was determined, and the sagittal section area was measured. It was established that animals classified as brachycephalic have more compact olfactory bulbs, with smaller cross-sectional areas, ventral orientation and smaller angles established with the line that goes from the hard palate and the intercondylar notch of the foramen magnum. Animals classified as dolichocephalic have more globose and wider olfactory bulbs, dorsal orientation, and larger angles. Mesocephalic animals present an intermediate position. Males and younger adult animals have olfactory bulbs with larger cross-sectional areas than females and older animals. This work allows for the preliminarily characterization of the olfactory bulb in cats in the sagittal plane, and the correlations identified with other head structures open doors for the use of the bulb as an early indicator for the establishment of alterations of varied etiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672697 | PMC |
http://dx.doi.org/10.3390/ani14243590 | DOI Listing |
Zool Res
January 2025
School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases, Qingdao University, Qingdao, Shandong, 266071, China. E-mail:
Iron is the most abundant transition metal in the brain and is essential for brain development and neuronal function; however, its abnormal accumulation is also implicated in various neurological disorders. The olfactory bulb (OB), an early target in neurodegenerative diseases, acts as a gateway for environmental toxins and contains diverse neuronal populations with distinct roles. This study explored the cell-specific vulnerability to iron in the OB using a mouse model of intranasal administration of ferric ammonium citrate (FAC).
View Article and Find Full Text PDFNat Commun
January 2025
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
While animals readily adjust their behavior to adapt to relevant changes in the environment, the neural pathways enabling these changes remain largely unknown. Here, using multiphoton imaging, we investigate whether feedback from the piriform cortex to the olfactory bulb supports such behavioral flexibility. To this end, we engage head-fixed male mice in a multimodal rule-reversal task guided by olfactory and auditory cues.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Department of Autonomic Neuroscience, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-ku, 173-0015, Tokyo, Japan.
The olfactory bulb receives cholinergic basal forebrain inputs as does the neocortex. With a focus on nicotinic acetylcholine receptors (nAChRs), this review article provides an overview and discussion of the following findings: (1) the nAChRs-mediated regulation of regional blood flow in the neocortex and olfactory bulb, (2) the nAChR subtypes that mediate their responses, and (3) their activity in old rats. The activation of the α4β2-like subtype of nAChRs produces vasodilation in the neocortex, and potentiates olfactory bulb vasodilation induced by olfactory stimulation.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
In the ventricular-subventricular-zone (V-SVZ) of the postnatal mammalian brain, immature neurons (neuroblasts) are generated from neural stem cells throughout their lifetime. These V-SVZ-derived neuroblasts normally migrate to the olfactory bulb through the rostral migratory stream, differentiate into interneurons, and are integrated into the preexisting olfactory circuit. When the brain is injured, some neuroblasts initiate migration toward the lesion and attempt to repair the damaged neuronal circuitry, but their low regeneration efficiency prevents functional recovery.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
GABAergic neurons in basal forebrain (BF) nuclei project densely to all layers of the mouse main olfactory bulb (OB), the first relay in odor information processing. However, BF projection neurons are diverse and the contribution of each subtype to odor information processing is not known. In the present study, we used retrograde and anterograde tracing methods together with whole-brain light-sheet analyses, patch-clamp recordings coupled with optogenetic and chemogenetic approaches during spontaneous odor discrimination, and go/no-go odor discrimination/learning tests to characterize the synaptic targets in the OB of BF calretinin-expressing (CR+) GABAergic cells and to reveal their functional implications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!