Predicting postoperative adhesive small bowel obstruction in infants under 3 months with intestinal malrotation: a random forest approach.

J Pediatr (Rio J)

Department of General Surgery and Neonatal Surgery, Liangjiang Wing, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China. Electronic address:

Published: January 2025

Objective: This study aimed to develop a predictive model using a random forest algorithm to determine the likelihood of postoperative adhesive small bowel obstruction (ASBO) in infants under 3 months with intestinal malrotation.

Methods: A machine learning model was used to predict postoperative adhesive small bowel obstruction using comprehensive clinical data extracted from 107 patients with a follow-up of at least 24 months. The Boruta algorithm was used for selecting clinical features, and nested cross-validation tuned and selected hyper-parameters for the random forest model. The model's performance was validated with 1000 bootstrap samples and assessed using receiver operating characteristic (ROC) analysis, the area under the ROC curve (AUC), sensitivity, specificity, precision, and F1 score.

Results: The random forest model demonstrated high diagnostic accuracy with an AUC of 0.960. Significant predictors of ASBO included pre-operative white blood cell count (pre-WBC), mechanical ventilation (MV) duration, surgery duration, and post-operative albumin levels (post-ALB). Partial dependence plots showed non-linear relationships and threshold effects for these variables. The model achieved high sensitivity (0.805) and specificity (0.952), along with excellent precision (0.809) and a robust F1 score (0.799), indicating balanced recall and precision performance.

Conclusion: This study presents a machine learning model to accurately predict postoperative ASBO in infants with intestinal malrotation. Demonstrating high accuracy and robustness, this model shows great promise for enhancing clinical decision-making and patient outcomes in pediatric surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jped.2024.11.011DOI Listing

Publication Analysis

Top Keywords

random forest
16
postoperative adhesive
12
adhesive small
12
small bowel
12
bowel obstruction
12
infants months
8
months intestinal
8
intestinal malrotation
8
asbo infants
8
machine learning
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!