Fibroblast-like synoviocytes (FLS) are key cells promoting cartilage damage and bone loss in rheumatoid arthritis (RA). They are activated to assume an invasive and migratory phenotype. While mechanisms of FLS activation are unknown, evidence suggests that pre-damaged extracellular matrix (ECM) of the cartilage can trigger FLS activation. Integrin α11β1 might be involved in the activation, as it is increased in RA patients and hTNFtg mice, an RA mouse model. We treated murine chondrocytes with TNFα to produce a damaged, RA-like matrix. Comparison to healthy chondrocyte matrix revealed decreased ECM proteins, e.g. collagens and proteoglycans, increased matrix-degrading proteins and elevated levels of inflammatory cytokines. FLS responded to the damaged chondrocyte matrix with a matrix-remodeling and pro-inflammatory phenotype characterized by a gene signature involved in matrix degradation and increased production of CLL11 and CCL19. Damaged chondrocyte matrix stimulated increased Itga11 expression in FLS, correlating with the increased α11β1 amounts in RA patients. FLS deficient in integrin α11β1 released lower amounts of inflammation-associated cytokines. Our results demonstrate differences in healthy and RA-like chondrocyte ECM and distinctly different responses of wt FLS to damaged versus healthy ECM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2025.114408 | DOI Listing |
Nutrients
December 2024
Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan.
Background: Osteoarthritis (OA) is a chronic condition characterized by joint pain and disability, driven by excessive oxidative stress and inflammatory cytokine production in chondrocytes, resulting in cell death and cartilage matrix breakdown. Our previous study showed that in monosodium iodoacetate (MIA)-induced OA rats, oral administration of heat-killed subsp. 557 (LDL557) could significantly decrease OA progression.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania.
Osteoarthritis (OA) is a degenerative joint disease characterized by the breakdown of cartilage and the subsequent inflammation of joint tissues, leading to pain and reduced mobility. Despite advancements in symptomatic treatments, disease-modifying therapies for OA remain limited. This narrative review examines the dual role of autophagy in OA, emphasizing its protective functions during the early stages and its potential to contribute to cartilage degeneration in later stages.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea.
() was extracted using fermented ethanol. The effect of fermented ethanol extract of (FeCH) on chondrocyte viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-iphenyltetrazolium bromide assay, which showed no cytotoxicity at 2 mg/mL. FeCH pretreatment in IL-1β-stimulated chondrocytes significantly inhibited the accumulation of nitric oxide and prostaglandin E, which was analyzed using the ELISA assay.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun 920-0293, Japan.
Inflammation and oxidative stress are crucial for osteoarthritis (OA) pathogenesis. Despite the potential of pharmacological pretreatment of chondrocytes in preventing OA, its efficacy in preventing the progression of cartilage damage and promoting its recovery has not been examined. In this study, an HO-induced human OA-like chondrocyte cell model was created using H1467 primary human chondrocytes to evaluate the efficacy of interleukin (IL)-6 and cyclooxygenase (COX)-2 inhibitors (tocilizumab and celecoxib, respectively) in the prevention and treatment of cartilage damage.
View Article and Find Full Text PDFExp Cell Res
January 2025
Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany. Electronic address:
Fibroblast-like synoviocytes (FLS) are key cells promoting cartilage damage and bone loss in rheumatoid arthritis (RA). They are activated to assume an invasive and migratory phenotype. While mechanisms of FLS activation are unknown, evidence suggests that pre-damaged extracellular matrix (ECM) of the cartilage can trigger FLS activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!