To image or not to image: Use of imaging mass spectrometry in biomedical lipidomics.

Prog Lipid Res

Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa) - Health Research Institute of the Balearic Islands, Ctra. Valldemossa 79, Module G, Floor -1, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra Valldemossa 79, E-07120 Palma, Balearic Islands, Spain. Electronic address:

Published: January 2025

Lipid imaging mass spectrometry (LIMS) allows for establishing the bidimensional distribution of lipid species within a tissue section. One of the main advantages is the generation of spatial information on lipid species distribution at a spatial (lateral) resolution bordering on single-cell resolution with no need to isolate cells. Thus, LIMS images demonstrate, with a level of detail never described before, that lipid profiles are highly sensitive to cell type and pathophysiological state. The wealth and relevance of the information conveyed by LIMS makes up for the lack of a separation stage before sample injection into the mass analyzer, which can somehow be circumvented by other means. Hence, the possibility of describing the lipidome at the cellular level while preserving the microenvironment offers an incomparable opportunity to investigate physiological and pathological contexts. However, to fully grasp the biological implications of the lipid profiles, it is essential to contextualize LIMS data within the broader multiscale 'omic' landscape, entailing genomics, epigenomics, and proteomics, each offering a unique window into the regulatory layers of the cell. In this line, the number of techniques that can be combined with LIMS to delve into the molecular mechanisms underlying differential lipid profiles is continuously increasing. Herein, we aim to describe the key features of LIMS analyses, from sample preparation to data interpretation, as well as the current methodologies to enrich and complete the final outcome. While the field is rapidly advancing, we consider there is solid evidence to foresee the incorporation of LIMS into clinical environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plipres.2025.101319DOI Listing

Publication Analysis

Top Keywords

lipid profiles
12
imaging mass
8
mass spectrometry
8
lipid species
8
lims
7
lipid
6
image image
4
image imaging
4
spectrometry biomedical
4
biomedical lipidomics
4

Similar Publications

Unlabelled: mRNA vaccines represent a milestone in the history of vaccinology, because they are safe, very effective, quick and cost-effective to produce, easy to adapt should the antigen vary, and able to induce humoral and cellular immunity.

Methods: To date, only two COVID-19 mRNA and one RSV vaccines have been approved. However, several mRNA vaccines are currently under development for the prevention of human viral (influenza, human immunodeficiency virus [HIV], Epstein-Barr virus, cytomegalovirus, Zika, respiratory syncytial virus, metapneumovirus/parainfluenza 3, Chikungunya, Nipah, rabies, varicella zoster virus, and herpes simplex virus 1 and 2), bacterial (tuberculosis), and parasitic (malaria) diseases.

View Article and Find Full Text PDF

Background: Lipid vesicles, especially those utilizing biocompatible materials like chitosan (CHIT), hold significant promise for enhancing the stability and release characteristics of drugs such as indomethacin (IND), effectively overcoming the drawbacks associated with conventional drug formulations.

Objectives: This study seeks to develop and characterize novel lipid vesicles composed of phosphatidylcholine and CHIT that encapsulate indomethacin (IND-ves), as well as to evaluate their in vitro hemocompatibility.

Methods: The systems encapsulating IND were prepared using a molecular droplet self-assembly technique, involving the dissolution of lipids, cholesterol, and indomethacin in ethanol, followed by sonication and the gradual incorporation of a CHIT solution to form stable vesicular structures.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) have shown promise as a delivery system for nucleic acid-based therapeutics, including DNA, siRNA, and mRNA vaccines. The immune system plays a critical role in the response to these nanocarriers, with innate immune cells initiating an early response and adaptive immune cells mediating a more specific reaction, sometimes leading to potential adverse effects. Recent studies have shown that the innate immune response to LNPs is mediated by Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs), which recognize the lipid components of the nanoparticles.

View Article and Find Full Text PDF

The Effects of Novel Co-Amorphous Naringenin and Fisetin Compounds on a Diet-Induced Obesity Murine Model.

Nutrients

December 2024

Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México 14080, Mexico.

Background/objective: In recent studies, it has been shown that dietary bioactive compounds can produce health benefits; however, it is not known whether an improvement in solubility can enhance their biological effects. Thus, the aim of this work was to study whether co-amorphous (CoA) naringenin or fisetin with enhanced solubility modify glucose and lipid metabolism, thermogenic capacity and gut microbiota in mice fed a high-fat, high-sucrose (HFSD) diet.

Methods: Mice were fed with an HFSD with or without CoA-naringenin or CoA-fisetin for 3 months.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!