A novel super-resolution STED microscopy analysis approach to observe spatial MCU and MICU1 distribution dynamics in cells.

Biochim Biophys Acta Mol Cell Res

Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/4 EAST, 8010 Graz, Austria; BioTechMed, Graz, Austria. Electronic address:

Published: January 2025

The uptake of Ca by mitochondria is an important and tightly controlled process in various tissues. Even small changes in the key proteins involved in this process can lead to significant cellular dysfunction and, ultimately, cell death. In this study, we used stimulated emission depletion (STED) microscopy and developed an unbiased approach to monitor the sub-mitochondrial distribution and dynamics of the mitochondrial calcium uniporter (MCU) and mitochondrial calcium uptake 1 (MICU1) under resting and stimulated conditions. To visualize the inner mitochondrial membrane, the STED-optimized dye called pkMitoRed was used. The study presented herein builds on the previously verified exclusive localization of MICU1 in the intermembrane space, and that MCU moves exclusively laterally along the inner mitochondrial membrane (IMM). We applied a multi-angled arrow histogram to analyze the distribution of proteins within mitochondria, providing a one-dimensional view of protein localization along a defined distance. Combining this with optimal transport colocalization enabled us to further predict submitochondrial protein distribution. Results indicate that in HeLa cells Ca elevation yielded MCU translocation from the cristae membrane (CM) to the inner boundary membrane (IBM). In AC16 cardiomyocyte cell line, MCU is mainly located at the IBM under resting conditions, and it translocates to the CM upon rising Ca. Our data describe a novel unbiased super-resolution image analysis approach. Our showcase sheds light on differences in spatial distribution dynamics of MCU in cell lines with different MICU1:MCU abundance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2025.119900DOI Listing

Publication Analysis

Top Keywords

distribution dynamics
12
sted microscopy
8
analysis approach
8
mitochondrial calcium
8
inner mitochondrial
8
mitochondrial membrane
8
mcu
6
distribution
5
novel super-resolution
4
super-resolution sted
4

Similar Publications

Track Deflection Monitoring for Railway Construction Based on Dynamic Brillouin Optical Time-Domain Reflectometry.

Sensors (Basel)

December 2024

Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510630, China.

Real-time online monitoring of track deformation during railway construction is crucial for ensuring the safe operation of trains. However, existing monitoring technologies struggle to effectively monitor both static and dynamic events, often resulting in high false alarm rates. This paper presents a monitoring technology for track deformation during railway construction based on dynamic Brillouin optical time-domain reflectometry (Dy-BOTDR), which effectively meets requirements in the monitoring of both static and dynamic events of track deformation.

View Article and Find Full Text PDF

This study addresses the challenges of magnetic circuit coupling and control complexity in active radial magnetic bearings (ARMBs) by systematically investigating the electromagnetic performance of four magnetic pole configurations (NNSS, NSNS, NNNN, and SSSS). Initially, equivalent magnetic circuit modeling and finite element analysis (FEA) were employed to analyze the magnetic circuit coupling phenomena and their effects on the magnetic flux density distribution for each configuration. Subsequently, the air gap flux density and electromagnetic force were quantified under rotor eccentricity caused by unbalanced disturbances, and the dynamic performances of the ARMBs were evaluated for eccentricity along the x-axis and at 45°.

View Article and Find Full Text PDF

UAV Trajectory Control and Power Optimization for Low-Latency C-V2X Communications in a Federated Learning Environment.

Sensors (Basel)

December 2024

Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON M5B2K3, Canada.

Unmanned aerial vehicle (UAV)-enabled vehicular communications in the sixth generation (6G) are characterized by line-of-sight (LoS) and dynamically varying channel conditions. However, the presence of obstacles in the LoS path leads to shadowed fading environments. In UAV-assisted cellular vehicle-to-everything (C-V2X) communication, vehicle and UAV mobility and shadowing adversely impact latency and throughput.

View Article and Find Full Text PDF

Inspection robots, which improve hazard identification and enhance safety management, play a vital role in the examination of high-risk environments in many fields, such as power distribution, petrochemical, and new energy battery factories. Currently, the position precision of the robots is a major barrier to their broad application. Exact kinematic model and control system of the robots is required to improve their location accuracy during movement on the unstructured surfaces.

View Article and Find Full Text PDF

This paper presents a comprehensive review of path planning in dynamic environments. This review covers the entire process, starting from obstacle detection techniques, through path-planning strategies, and also extending to formation control and communication styles. The review discusses the key trends, challenges, and gaps in current methods to emphasize the need for more efficient and robust algorithms that can handle complex and unpredictable dynamic environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!