A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular and functional characterization of Accl(2)efl: A biomarker for heavy metal stress in Apis cerana cerana. | LitMetric

Molecular and functional characterization of Accl(2)efl: A biomarker for heavy metal stress in Apis cerana cerana.

Ecotoxicol Environ Saf

Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, Shandong Province, China. Electronic address:

Published: January 2025

The expanded lethal (2) essential for life [l(2)efl] gene family is responsive to proteostatic stresses. Their protein products are core components of the stress response mechanism and are emerging as promising biomarkers for cellular stress in Apis mellifera. However, l(2)efl (LOC410857) uniquely remains unresponsive to heat stress within this gene family, and research examining its role in adaptation to other types of stress across diverse bee species is scarce. To address this knowledge gap, we cloned the l(2)efl gene from Apis cerana cerana [Accl(2)efl] and conducted a bioinformatics analysis on the encoded protein, aiming to elucidate the potential functions of Accl(2)efl. Our study encompassed assessing the role of Accl(2)efl in the response of bees to various stressful environments and its involvement in tolerance to heavy metals (Cd and Hg). Furthermore, we employed the RNAi technology to delve into the response mechanisms of Accl(2)efl under Cd and Hg stress. Our findings revealed that Accl(2)efl was activated when exposed to CdCl or HgCl. Following the knockdown of Accl(2)efl, we observed that genes, such as defensins, were upregulated through the activation of the Toll signaling pathway. Conversely, the peroxisome signaling pathway was inhibited, resulting in a notable decrease in antioxidant enzyme activity. This led to a substantial elevation in Cd and Hg concentrations within hemolymph, accompanied by an increased mortality rate among bees re-exposed to CdCl or HgCl. Combined, our data indicated that Accl(2)efl may plays a role in the tolerance of Apis cerana cerana to Cd/Hg stress. These findings provide a scientific basis for the further exploration of the role of Accl(2)efl in the response of bees to Cd/Hg stress and for enhancing the anti-Cd/Hg stress signaling network. They further lay a theoretical foundation for identifying new stress biomarkers for bees as well as indicators for the detection of environmental pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2025.117676DOI Listing

Publication Analysis

Top Keywords

apis cerana
12
cerana cerana
12
stress
10
accl2efl
8
stress apis
8
gene family
8
role accl2efl
8
accl2efl response
8
response bees
8
stress findings
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!