Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sodium arsenite (NaAsO), the most common form of inorganic arsenic prevalent in the environment, has been closely linked to islet β-cell dysfunction, a critical pathological hallmark of type 2 diabetes (T2D). Even though apoptosis plays a pivotal role in arsenic-induced islet β-cell dysfunction, the explicit underlying mechanisms remain elusive. Here, we have identified that the SET-Rac1 signaling pathway is instrumental in the apoptosis and dysfunction of islet β-cells induced by NaAsO. During NaAsO-induced islet β-cell apoptosis and dysfunction, our observations indicated downregulation of SET (almost 0.5-fold) and upregulation of Rac1 (0.5-fold). Notably, overexpression of SET or inhibition of Rac1 substantially mitigated the apoptosis of islet β-cells and ameliorated the impaired insulin secretion (increased from 0.1 ng/ml to 0.2 ng/ml) caused by NaAsO exposure. In addition, we detected cytoskeletal disorganization following NaAsO treatment, characterized by elevated Cofilin-1 protein expression (approximately 2.5-fold) and disrupted cytoskeleton arrangement. Significantly, overexpression of SET or deletion of Rac1 rectified the NaAsO-induced cytoskeletal abnormalities, as evidenced by the reduced Cofilin-1 expression and enhanced F-actin fluorescence. Our research delineates that NaAsO triggers apoptosis and functional impairment of islet β-cells through cytoskeletal rearrangement mediated by the SET-Rac1 pathway. This discovery could provide novel insights into therapeutic strategies for T2D provoked by environmental toxicants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2024.117641 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!