A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sodium arsenite induces islets β-cells apoptosis and dysfunction via SET-Rac1-mediated cytoskeleton disturbance. | LitMetric

Sodium arsenite induces islets β-cells apoptosis and dysfunction via SET-Rac1-mediated cytoskeleton disturbance.

Ecotoxicol Environ Saf

Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China. Electronic address:

Published: January 2025

Sodium arsenite (NaAsO), the most common form of inorganic arsenic prevalent in the environment, has been closely linked to islet β-cell dysfunction, a critical pathological hallmark of type 2 diabetes (T2D). Even though apoptosis plays a pivotal role in arsenic-induced islet β-cell dysfunction, the explicit underlying mechanisms remain elusive. Here, we have identified that the SET-Rac1 signaling pathway is instrumental in the apoptosis and dysfunction of islet β-cells induced by NaAsO. During NaAsO-induced islet β-cell apoptosis and dysfunction, our observations indicated downregulation of SET (almost 0.5-fold) and upregulation of Rac1 (0.5-fold). Notably, overexpression of SET or inhibition of Rac1 substantially mitigated the apoptosis of islet β-cells and ameliorated the impaired insulin secretion (increased from 0.1 ng/ml to 0.2 ng/ml) caused by NaAsO exposure. In addition, we detected cytoskeletal disorganization following NaAsO treatment, characterized by elevated Cofilin-1 protein expression (approximately 2.5-fold) and disrupted cytoskeleton arrangement. Significantly, overexpression of SET or deletion of Rac1 rectified the NaAsO-induced cytoskeletal abnormalities, as evidenced by the reduced Cofilin-1 expression and enhanced F-actin fluorescence. Our research delineates that NaAsO triggers apoptosis and functional impairment of islet β-cells through cytoskeletal rearrangement mediated by the SET-Rac1 pathway. This discovery could provide novel insights into therapeutic strategies for T2D provoked by environmental toxicants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.117641DOI Listing

Publication Analysis

Top Keywords

apoptosis dysfunction
12
islet β-cell
12
islet β-cells
12
sodium arsenite
8
β-cell dysfunction
8
overexpression set
8
apoptosis
6
islet
6
dysfunction
5
naaso
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!