Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Natural polyphenolic antioxidants are widely present in foods such as fruits and vegetables, meanwhile applied in food processing and storage to prevent the formation of harmful compounds. While excessive antioxidants lead to negative impacts on human health. Hence, it is crucial to accurately detect antioxidant levels in order to enhance the overall nutritional content and food safety. Herein, a novel one-dimensional covalent organic framework (COF-Por-DPP) was constructed using 5,10,15,20-tetrakis(4-aminophenyl)-21H,23H-porphyrin and 4,4'-(2,6-pyrazinediyl)bisbenzaldehyde. The unique photoresensitive properties and topological structures endowed COF-Por-DPP excellent oxidase-like activity. The COF-Por-DPP based colorimetric assay was established for three antioxidants (gallic acid, tannic acid and caffeic acid). Moreover, this method was used to analyze real samples and a hydrogel sensor was constructed, which demonstrated good accuracy and practicability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2025.127519 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!