Microplastics (MPs) are widely distributed pollutants in various ecosystems, and biodegradation is a crucial process for removal of MPs from environments. Pearl River Estuary, one of the largest estuaries in China, is an important reservoir for MPs with polyethylene MPs (PE-MPs) as the most abundant MPs. Here, biodegradation of PE-MPs and the potential PE-degrading bacteria in sediments of eight major outlets of Pearl River Estuary were firstly investigated. Results showed that biodegradation extent of PE-MPs varied for different sourced sediments, with highest extent for Hongqimen sediment and lowest extent for Jitimen sediment. Selective enrichment of specific bacteria occurred on PE-MPs with Pseudomonadaceae as the predominant family. Potential PE-degrading bacteria of Pseudomonas, Vulcaniibacterium, Cupriavidus, Bacillus were selectively enriched on PE-MPs and their abundance showed positive correlations with degradation extent of PE-MPs, indicating a vital role of them in degrading PE-MPs. Diverse pure cultured strains affiliated to the genera Bacillus, Pseudomonas, Priestia, Lysinibacillus, Marinobacter, Stutzerimonas and Achromobacter isolated from the plastispheres were capable of degrading PE-MPs rapidly, and members in Bacillus showed highest efffeciency of PE-MPs degradation with 6.5 % weight loss of PE-MPs within 40 days. This study provides a new perspective on the natural degradation potential by microbial communities in sediments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.137061 | DOI Listing |
Environ Monit Assess
January 2025
College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.
This study expands the original two-dimensional carbon footprint model into a three-dimensional model form. Introduce two indicators of carbon footprint depth (CF) and size (CF) to form a three-dimensional carbon footprint model (CF), which is used to respectively represent the occupation and consumption of natural capital reserves by human activities' carbon emissions. Based on the 3D carbon footprint model, this paper calculated the CF, CF, and CF for four different urban agglomerations of China (BTH, YRD, PRD, and CY) spanning from 2000 to 2017.
View Article and Find Full Text PDFProtein Eng Des Sel
January 2025
Pfizer Rare Disease Research Unit, 610 Main Street, Cambridge, MA 02139, United States.
Pompe disease is a tissue glycogen disorder caused by genetic insufficiency of the GAA enzyme. GAA enzyme replacement therapies for Pompe disease have been limited by poor lysosomal trafficking of the recombinant GAA molecule through the native mannose-6-phosphate-mediated pathway. Here, we describe the successful rational engineering of a chimeric GAA enzyme that utilizes the binding affinity of a modified IGF-II moiety to its native receptor to bypass the mannose-6-phosphate-mediated lysosomal trafficking pathway, conferring a significant increase in cellular uptake of the GAA enzyme.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China. Electronic address:
Polychlorinated biphenyls (PCBs) are persistent organic pollutants known for their environmental persistence and bioaccumulation, posing significant health risks. This study examines the toxic effects of a representative PCBs (Aroclor 1254) on yellowfin seabream (Acanthopagrus latus) exposured for 30 days through a multi-omics approach. Histopathological examinations revealed structural damage to the intestinal structure and hepatic steatosis, along with elevated serum lipopolysaccharide levels, indicating compromised intestinal barrier integrity and liver inflammation.
View Article and Find Full Text PDFMycoKeys
January 2025
Research Center of Natural History and Culture, Center for Yunnan Plateau Biological Resources Protection and Utilization, Key Laboratory of Yunnan Provincial Department of Education of the Deep-Time Evolution on Biodiversity from the Origin of the Pearl River, College of Biology and Food Engineering, Qujing Normal University, Qujing 655011, China.
Saprobic fungi are known for their critical role in decomposition and nutrient cycling. The study of saprobic fungi is equally important, as it helps in understanding their ecological roles and identifying their hidden diversity. This study focused on saprobic fungi on , which is poorly studied compared to economically important hosts like coffee, tea, and rubber.
View Article and Find Full Text PDFZhongguo Xue Xi Chong Bing Fang Zhi Za Zhi
August 2024
Institute of Disinfection and Vector Control, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong 511430, China.
Objective: To investigate the fluctuations in the population density of and changes in the population density of in different geographical areas and different breeding habitats in Guangdong Province from 2018 to 2023, so as to provide insights into prevention and control of mosquito-borne infectious diseases in the province.
Methods: surveillance sites were assigned in 1 609 townships (streets) from 121 districts (counties) of 21 cities in Guangdong Province during the period between March and November from 2018 to 2023. The surveillance of the population density of was performed once a month in each surveillance site, and once a month in specific settings in cities where dengue were highly prevalent in Guangdong Province from December to February of the next year during the period from 2018 through 2023.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!