The concern of potential toxic elements (PTEs) contamination in the river ecosystem is growing due to anthropological activity. The contents of seven PTEs in sediments from the Balu River channel were analyzed using atomic absorption spectroscopy (AAS) and an environmental risk model. Several PTEs were found in the sediment at high levels, including zinc (Zn), copper (Cu), arsenic (As), lead (Pb), cadmium (Cd), nickel (Ni), and mercury (Hg), that might pose a risk to human and ecological health. The highest mean concentration of PTEs in sediment followed in decreasing order Zn (1365.21 mg/kg) > Cu (149.34 mg/kg) > Pb (46.34 mg/kg) > Ni (34.78 mg/kg) > As (6.31 mg/kg) > Cd (2.34 mg/kg) > Hg (1.03 mg/kg). In addition, most of these PTEs were significantly correlated (p < 0.05) among the sites and exceeded the safety guideline value. The geo-accumulation index (Igeo), contamination factor (CF), and pollution load index (PLI) showed high levels of PTEs contamination and moderately polluted to highly polluted levels of these elements. At the BL3, BL4, and BL6 sites within the study site, the ecological risk (PERI) score was extremely high, and the PERI values range found was from 75.39 to 355.72. Every PTE had a slightly greater concentration during the dry season than the wet season. Interestingly, PTE accumulation from sediment indicated non-carcinogenic risk (HQ) in human health, whereas most of the sites showed carcinogenic risk (CR) to human health (adult and child) due to Cd and Ni accumulation. Multivariate statistical analysis (MVSA) indicated the most likely anthropological sources were the untreated wastes discharged in the river sampling area. People who come into contact with polluted sediments are constantly exposed to Ni and Cd pollution, which increases the risk of cancer and non-cancerous diseases. So, continuous PTE monitoring is advised by this study to assess ecological and human health risks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconhyd.2024.104492 | DOI Listing |
Cell Biol Toxicol
January 2025
Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing, China.
Manganese (Mn) is a neurotoxin that has been etiologically linked to the development of neurodegenerative diseases in the case of overexposure. It is widely accepted that overexposure to Mn leads to manganism, which has clinical symptoms similar to Parkinson's disease (PD), and is referred to as parkinsonism. Astrocytes have been reported to scavenge and degrade extracellular α-synuclein (α-Syn) in the brain.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Botany, Bacha Khan University, Charsadda, Charsadda, 24420, Khyber Pakhtunkhwa, Pakistan.
Wastewater is commonly contaminated with many pharmaceutical pollutants, so an efficient purification method is required for their removal from wastewater. In this regard, an innovative tertiary Se/SnO@CMC/Fe-GA nanocomposite was synthesized through encapsulation of metal organic frameworks (Fe-glutaric acid) onto Se/SnO-embedded-sodium carboxy methyl cellulose matrix to thoroughly evaluate its effectiveness for adsorption of levofloxacin drug from wastewater. The prepared Se/SnO@CMC/Fe-GA nanocomposite was analyzed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to valuate optical property, size, morphology, thermal stability, and chemical composition.
View Article and Find Full Text PDFMethods Protoc
January 2025
The Krieger Eye Research Laboratory, Bruce and Ruth Faculty of Medicine, Technion-Institute of Technology, Haifa 3525433, Israel.
Cobalt is a trace element, crucial for red blood cell formation and neurological function. Cobalt toxicity is often only diagnosed after severe manifestations, including visual impairment. We aimed to investigate whether optical coherence tomography (OCT) and magnetic resonance imaging (MRI) can effectively detect cobalt-induced ocular toxicity in a murine model.
View Article and Find Full Text PDFSe Pu
February 2025
College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
Trace contaminants are toxic and their widespread presence in the environment potentially threatens human health. The levels of these pollutants are often difficult to determine directly using instruments owing to the complexities of environment matrices. Hence, pretreatment steps, such as sample purification and concentration, are key along with various processes that enhance the accuracy and sensitivity of the detection method.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
Background: The membrane transporters viz. multidrug and toxic compound extrusion (MATE) and aluminum-activated malate transporter (ALMT) are associated with aluminum (Al) tolerance by accelerating secretion of organic acids, which can influence nutrient availability and stress response. However, such transporter families have not yet been reported in lentil under Al stress condition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!