A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrochemical biosensor based on composite of gold nanoparticle/reduced-graphene oxide/graphitic carbon nitride and a caprolactone polymer for highly sensitive detection of CEA. | LitMetric

Carcinoembryonic antigen (CEA) is a broad-spectrum biomarker, and its accurate detection and analysis is important for early clinical diagnosis and treatment. This study aimed to develop a highly sensitive and selective sandwich-type immunosensor based on electrochemical impedance spectroscopy (EIS) for the accurate detection of CEA. A novel composite material, gold nanoparticle/reduced-graphene oxide/graphitic carbon nitride (AuNPs/rGO/g-CN), was synthesized with excellent electrical conductivity and a large specific surface area to immobilize biological probes. And ab1-CEA-ab2 formed a sandwich structure of 'antibody-antigen-antibody', which ensured the high selectivity of the biosensor. Furthermore, the introduction of caprolactone polymer (DMPA-PCL) significantly amplifies the impedance signal and improves the sensitivity of the analytical method. Scanning electron microscopy, x-ray diffraction, transmission electron microscopy Fourier transform infrared spectroscopy, and ultraviolet-visible spectrophotometry were used to characterise the prepared AuNPs/rGO/g-CN and DMPA-PCL. Under the optimal conditions, the sensor showed good analytical performance for the detection of CEA with a linear range of 100 fg mL-100 ng mL and a detection limit of 83.2 fg mL. And the sandwich-type immunosensor showed good selectivity and stability for the recognition of CEA in real samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2024.108897DOI Listing

Publication Analysis

Top Keywords

detection cea
12
gold nanoparticle/reduced-graphene
8
nanoparticle/reduced-graphene oxide/graphitic
8
oxide/graphitic carbon
8
carbon nitride
8
caprolactone polymer
8
highly sensitive
8
accurate detection
8
sandwich-type immunosensor
8
electron microscopy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!