Biopharmaceuticals are the fastest-growing class of drugs in the healthcare industry, but their global reach is severely limited by their propensity for rapid aggregation. Currently, surfactant excipients such as polysorbates and poloxamers are used to prevent protein aggregation, which significantly extends shelf-life. Unfortunately, these excipients are themselves unstable, oxidizing rapidly into 100s of distinct compounds, some of which cause severe adverse events in patients. Here, the highly stable, well-defined, and modular nature of amphiphilic polyacrylamide-derived excipients is leveraged to isolate the key mechanisms responsible for excipient-mediated protein stabilization. With a library of compositionally identical but structurally distinct amphiphilic excipients, a new property is quantified, compositional dispersity, that is key to excipient performance and utilized this property to rationally design new ultra-stable surfactant excipients that increase the stability of a notoriously unstable biopharmaceutical, monomeric insulin, by an order of magnitude. This comprehensive and generalizable understanding of excipient structure-function relationships represents a paradigm shift for the formulation of biopharmaceuticals, moving away from trial-and-error screening approaches toward rational design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202409604 | DOI Listing |
Int J Mol Sci
December 2024
Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy.
Mutations in the SLC25A38 gene are responsible for the second most common form of congenital sideroblastic anemia (CSA), a severe condition for which no effective treatment exists. We developed and characterized a K562 erythroleukemia cell line with markedly reduced expression of the SLC25A38 protein (A38-low cells). This model successfully recapitulated the main features of CSA, including reduced heme content and mitochondrial respiration, increase in mitochondrial iron, ROS levels and sensitivity to oxidative stress.
View Article and Find Full Text PDFBiomolecules
December 2024
Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia.
The first monomeric pyridoxal-5'-phosphate (PLP)-dependent transaminase from a marine, aromatic-compound-degrading, sulfate-reducing bacterium Tol2, has been studied using structural, kinetic, and spectral methods. The monomeric organization of the transaminase was confirmed by both gel filtration and crystallography. The PLP-dependent transaminase is of the fold type IV and deaminates D-alanine and ()-phenylethylamine in half-reactions.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA.
Biopharmaceuticals are the fastest-growing class of drugs in the healthcare industry, but their global reach is severely limited by their propensity for rapid aggregation. Currently, surfactant excipients such as polysorbates and poloxamers are used to prevent protein aggregation, which significantly extends shelf-life. Unfortunately, these excipients are themselves unstable, oxidizing rapidly into 100s of distinct compounds, some of which cause severe adverse events in patients.
View Article and Find Full Text PDFLipid nanoparticles (LNPs) are the most advanced delivery system currently available for RNA therapeutics. Their development has accelerated since the success of Patisiran, the first siRNA-LNP therapeutic, and the mRNA vaccines that emerged during the COVID-19 pandemic. Designing LNPs with specific targeting, high potency, and minimal side effects is crucial for their successful clinical use.
View Article and Find Full Text PDFGeroscience
January 2025
Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.
Declines in physical and cognitive function are common in older adults. The circulating enzyme glycosylphosphatidylinositol (GPI)-specific phospholipase D1 (GPLD1) is elevated after exercise and has been associated with improved cognitive function when administered to aged mice. The purpose of this study was to investigate the relationship between GPLD1 and both cognitive function and brain structure/function in older adults with either high or low levels of physical activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!