Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.
Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD. Minigene assays were performed to evaluate the pathogenicity of variants. Transmission electron microscopy (TEM) and high-speed video analysis (HSVA) were conducted to analyze the function of cilia in respiratory epithelial cells.
Results: We identified two variants of DNAAF3: c.557G>A, p.G186E in exon 5, and c.1364G>A, p.G455D at the terminal nucleotide of exon 10 in a 16-year-old male patient. Through a minigene assay, we demonstrated that the c.1364G>A variant led to a four-nucleotide skipping. The cilia in epithelial ciliary cells of the proband were almost immotile. The absence of outer dynein arms and inner dynein arms was also observed.
Conclusions: Our study identified two compound heterozygous variants of DNAAF3, a pathogenic gene for PCD, and proved that a novel missense variant c.1364G>A affects splicing. Our findings not only expanded the spectrum of mutations in the DNAAF3 gene but also highlighted the importance of investigating variants of uncertain significance (VUS) for comprehensive genetic diagnoses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mgg3.70036 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705539 | PMC |
Mol Genet Genomic Med
January 2025
The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.
Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.
Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.
Front Endocrinol (Lausanne)
January 2025
Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
Background: Evidence indicates a negative link between glucosamine and age-related cognitive decline and sarcopenia. However, the causal relationship remains uncertain. This study aims to verify whether glucosamine is causally associated with cognitive function and sarcopenia.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Respiratory and Critical Care Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China.
Background: APOE gene polym orphisms have been linked to Alzheimer's disease and coronary heart diseases. However, their relationship with lung adenocarcinoma (LUAD) remains uncertain.
Methods: This study analyzed a cohort of 600 individuals comprising 200 LUAD patients in the lung cancer group and 400 healthy individuals as controls.
J Pediatr Gastroenterol Nutr
January 2025
Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan.
Objectives: Wilson disease (WD) is an autosomal-recessive disorder that disrupts copper homeostasis. ATPase copper transporting beta (ATP7B) gene is implicated as the disease-causing gene in WD. The common symptoms associated with WD include hepatic, neurological, psychiatric, and ophthalmic manifestations.
View Article and Find Full Text PDFPLoS Genet
January 2025
Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada.
Innovative and easy-to-implement strategies are needed to improve the pathogenicity assessment of rare germline missense variants. Somatic cancer driver mutations identified through large-scale tumor sequencing studies often impact genes that are also associated with rare Mendelian disorders. The use of cancer mutation data to aid in the interpretation of germline missense variants, regardless of whether the gene is associated with a hereditary cancer predisposition syndrome or a non-cancer-related developmental disorder, has not been systematically assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!