Highly pathogenic avian influenza (HPAI) outbreaks have repeatedly occurred in two districts of Kerala state, India, over the last few years. The outbreaks in the wetland areas coincided with the arrival of migratory birds. At the time, the factors responsible for local transmission in ducks were not known. This study aimed to identify the socio-economic factors responsible for spatial variation in the occurrence of HPAI outbreaks in the two districts using Bayesian network modelling (BNM) and Stochastic Partial Differential Equation (SPDE) model. Further, information was collected on the duck rearing practices in rice paddy fields to identify the risk factors for local - spread of the outbreaks. We found that the SPDE model without covariates explained variation in occurrence of outbreaks. The number of rice paddy fields used by the duck farmers was identified as risk factor. We concluded based on BNM and SPDE that the infected migratory birds were the source of infection for the first few duck farms in the wetland areas and subsequent transmission was driven by shifting of ducks from one rice paddy field to other fields. There is a probability of persistent and recurrent infections in the ducks and possible spill over to humans. Hence, it is important to have surveillance in ducks to prevent recurrent outbreaks in the region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0950268824001882 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748019 | PMC |
Glob Chang Biol
January 2025
Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
Unraveling how agricultural management practices affect soil biota network complexity and stability and how these changes relate to soil processes and functions is critical for the development of sustainable agriculture. However, our understanding of these knowledge still remains unclear. Here, we explored the effects of soil management intensity on soil biota network complexity, stability, and soil multifunctionality, as well as the relationships among these factors.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836 Japan.
Polymer-coated fertilizers, widely used in rice cultivation in Japan, contribute to reactive nitrogen management and agricultural productivity but are a source of microplastics in the environment. Here, we investigated microplastics derived from polymer-coated fertilizer (microcapsule) runoff in Japanese paddy fields at 38 sites to quantitatively assess the behavior of microcapsules in paddy fields, and to estimate the total amount of runoff and accumulation in Japan. We also examined the factors causing variations in the amount of runoff among paddy fields.
View Article and Find Full Text PDFBackground: Kyasanur forest disease virus (KFDV) is a tick-borne flavivirus causing debilitating and potentially fatal disease in people in the Western Ghats region of India. The transmission cycle is complex, involving multiple vector and host species, but there are significant gaps in ecological knowledge. Empirical data on pathogen-vector-host interactions and incrimination have not been updated since the last century, despite significant local changes in land use and the expansion of KFD to new areas.
View Article and Find Full Text PDFPLoS One
January 2025
Rice Department, Bangkok, Thailand.
Bacterial Leaf Blight (BLB) usually attacks rice in the flowering stage and can cause yield losses of up to 50% in severely infected fields. The resulting yield losses severely impact farmers, necessitating compensation from the regulatory authorities. This study introduces a new pipeline specifically designed for detecting BLB in rice fields using unmanned aerial vehicle (UAV) imagery.
View Article and Find Full Text PDFPLoS One
January 2025
College of Agriculture, Guizhou University, Guiyang, China.
The impact of straw and biochar on carbon mineralization and the function of carbon cycle genes in paddy soil is important for soil nutrient management and the transformation of carbon pools. This research is based on a five-year field experiment with four treatments: no fertilizer application (CK); chemical fertilizer only (NPK); straw combined with chemical fertilizer (NPKS); and biochar combined with chemical fertilizer (NPKB). By integrating indoor mineralization culture with metagenomic approaches, we analyzed the response of organic carbon mineralization and carbon cycle genes in typical paddy soil from Guizhou Province, China, to different fertilization treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!