A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Climate Change Drives Changes in the Size and Composition of Fungal Communities Along the Soil-Seedling Continuum of Schima superba. | LitMetric

Climate Change Drives Changes in the Size and Composition of Fungal Communities Along the Soil-Seedling Continuum of Schima superba.

Mol Ecol

ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China.

Published: January 2025

Plant microbiomes have a major influence on forest structure and functions, as well as tree fitness and evolution. However, a comprehensive understanding of variations in fungi along the soil-plant continuum, particularly within tree seedlings, under global warming is lacking. Here, we investigated the dynamics of fungal communities across different compartments (including bulk soil and rhizosphere soil) and plant organs (including the endosphere of roots, stems and leaves) of Schima superba seedlings exposed to experimental warming and drought using AccuITS absolute quantitative sequencing. Our results revealed that warming and drought significantly reduced the number of specific fungal amplicon sequence variants (ASVs) in the bulk soil and rhizosphere soil, respectively. Variations in fungal communities were mainly explained by compartments and plant organs, with the composition of endophytic fungal communities within leaves (primarily attributed to species gain or loss) being most influenced by climate change. Moreover, warming significantly reduced the migration of Ascomycota, soil saprotrophs, wood saprotrophs and yeasts from the bulk soil to the rhizosphere soil but increased that of plant pathogens from the roots to the stems. Drought significantly decreased the absolute abundances of Chytridiomycota, Glomeromycota and Rozellomycota, as well as the migration of ectomycorrhizal fungi from the bulk soil to the rhizosphere soil but increased that of plant pathogens. Warming could indirectly reduce leaf area by increasing the diversity of leaf pathogens. These findings have potential implications for enhancing the resilience and functioning of natural forest ecosystems under climate change through the manipulation of plant microbiomes, as demonstrated in agroecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.17652DOI Listing

Publication Analysis

Top Keywords

fungal communities
16
bulk soil
16
soil rhizosphere
16
rhizosphere soil
16
climate change
12
soil
9
schima superba
8
plant microbiomes
8
plant organs
8
roots stems
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!