Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is primarily known for causing severe joint and muscle symptoms, but its pathological effects have extended beyond these tissues. In this study, we conducted a comprehensive proteomic analysis across various organs in rodent and nonhuman primate models to investigate CHIKV's impact on organs beyond joints and muscles and to identify key host factors involved in its pathogenesis. Our findings reveal significant species-specific similarities and differences in immune responses and metabolic regulation, with proteins like Interferon-Stimulated Gene 15 (ISG15) and Retinoic Acid-Inducible Gene I (RIG-I) playing crucial roles in the anti-CHIKV defense. We observed upregulated and downregulated metabolic status in CHIKV-infected rhesus monkeys and mice, respectively. Additionally, we identified host factors such as S100 Calcium-Binding Protein A8/A9 (S100A8/A9), Voltage-Dependent Anion Channel 1/2 (VDAC1/2), Complement Component 3 (C3), Apoptosis-Inducing Factor Mitochondria-Associated 1 (AIFM1), Endothelial Cell-Specific Chemotaxis Regulator (ECSCR), and Kininogen 1 (KNG1) that may contribute to CHIKV-induced inflammation and hemorrhage. These insights put emphases on the importance of understanding CHIKV's impact on organs beyond joints and muscles, providing potential therapeutic targets and enhancing our understanding of CHIKV pathogenesis. This research underscores the need for appropriate animal models in CHIKV studies and informs the development of targeted therapies to address its systemic effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702418 | PMC |
http://dx.doi.org/10.1002/mco2.70013 | DOI Listing |
Viruses
December 2024
Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Athens, GA 30605, USA.
Avian reoviruses (ARVs) represent a significant economic burden on the poultry industry due to their widespread prevalence and potential pathogenicity. These viruses, capable of infecting a diverse range of avian species, can lead to a variety of clinical manifestations, most notably tenosynovitis/arthritis. While many ARV strains are asymptomatic, pathogenic variants can cause severe inflammation and tissue damage in organs such as the tendons, heart, and liver.
View Article and Find Full Text PDFViruses
December 2024
Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" (IRCCS), 00149 Rome, Italy.
Persistence is a strategy used by many viruses to evade eradication by the immune system, ensuring their permanence and transmission within the host and optimizing viral fitness. During persistence, viruses can trigger various phenomena, including target organ damage, mainly due to an inflammatory state induced by infection, as well as cell proliferation and/or immortalization. In addition to immune evasion and chronic inflammation, factors contributing to viral persistence include low-level viral replication, the accumulation of viral mutants, and, most importantly, maintenance of the viral genome and reliance on viral oncoprotein production.
View Article and Find Full Text PDFViruses
December 2024
Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, C.P. 30100 Murcia, Spain.
Mixed infections of plant viruses are common in crops and represent a critical biotic factor with substantial epidemiological implications for plant viral diseases. Compared to single-virus infections, mixed infections arise from simultaneous or sequential infections, which can inevitably affect the ecology and evolution of the diseases. These infections can either exacerbate or ameliorate symptom severity, including virus-virus interactions within the same host that may influence a range of viral traits associated with disease emergence.
View Article and Find Full Text PDFViruses
December 2024
Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan.
Numerous host factors function as intrinsic antiviral effectors to attenuate viral replication. MARCH8 is an E3 ubiquitin ligase that has been identified as a host restriction factor that inhibits the replication of various viruses. This study elucidated the mechanism by which MARCH8 restricts respiratory syncytial virus (RSV) replication through selective degradation of the viral small hydrophobic (SH) protein.
View Article and Find Full Text PDFViruses
December 2024
Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India.
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), which are the only members of the gamma(γ) herpesviruses, are oncogenic viruses that significantly contribute to the development of various human cancers, such as Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, Kaposi's sarcoma, and primary effusion lymphoma. Oncogenesis triggered by γ-herpesviruses involves complex interactions between viral genetics, host cellular mechanisms, and immune evasion strategies. At the genetic level, crucial viral oncogenes participate in the disruption of cell signaling, leading to uncontrolled proliferation and inhibition of apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!