The promises and perils of circulating tumor DNA for monitoring immunotherapy response in non-small cell lung cancer.

Explor Target Antitumor Ther

Division of Pulmonary, Critical Care, and Sleep Disorders Medicine, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.

Published: November 2024

There has been a rapid expansion of immunotherapy options for non-small cell lung cancer (NSCLC) over the past two decades, particularly with the advent of immune checkpoint inhibitors. Despite the emerging role of immunotherapy in adjuvant and neoadjuvant settings though, relatively few patients will respond to immunotherapy which can be problematic due to expense and toxicity; thus, the development of biomarkers capable of predicting immunotherapeutic response is imperative. Due to the promise of a noninvasive, personalized approach capable of providing comprehensive, real-time monitoring of tumor heterogeneity and evolution, there has been wide interest in the concept of using circulating tumor DNA (ctDNA) to predict treatment response. Although the use of ctDNA to detect actionable mutations such as is now integral in the standard of care for patients with NSCLC, several large studies have also shown its potential as a biomarker of immunotherapeutic response. Ongoing ctDNA interventional clinical trials, such as the BR.36 trial, will help to clarify the potential role of ctDNA for therapeutic guidance. Despite the promise of this technology, there are many limitations and considerations that clinicians need to be aware of prior to widespread implementation in clinical practice, such as the effect of underlying comorbidities, ctDNA fraction, stage of underlying malignancy, and concordance between aberrations detected in ctDNA and tumor tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702262PMC
http://dx.doi.org/10.37349/etat.2024.00280DOI Listing

Publication Analysis

Top Keywords

circulating tumor
8
tumor dna
8
non-small cell
8
cell lung
8
lung cancer
8
immunotherapeutic response
8
ctdna
6
promises perils
4
perils circulating
4
tumor
4

Similar Publications

Introduction: Although photodynamic therapy (PDT) shows considerable potential for cancer treatment due to its precise spatial control and reduced toxicity, effectively eliminating residual cells under hypoxic conditions remains challenging because of the resistance conferred by these cells.

Methods: Herein, we synthesize an amphiphilic PEGylated polyphosphoester and present a nanocarrier (NP) specifically designed for the codelivery of hydrophobic photosensitizer (chlorin e6, Ce6) and hypoxia-activated prodrugs (tirapazamine, TPZ). We investigate the antitumor effect of NP on both cellular and animal level.

View Article and Find Full Text PDF

The promises and perils of circulating tumor DNA for monitoring immunotherapy response in non-small cell lung cancer.

Explor Target Antitumor Ther

November 2024

Division of Pulmonary, Critical Care, and Sleep Disorders Medicine, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.

There has been a rapid expansion of immunotherapy options for non-small cell lung cancer (NSCLC) over the past two decades, particularly with the advent of immune checkpoint inhibitors. Despite the emerging role of immunotherapy in adjuvant and neoadjuvant settings though, relatively few patients will respond to immunotherapy which can be problematic due to expense and toxicity; thus, the development of biomarkers capable of predicting immunotherapeutic response is imperative. Due to the promise of a noninvasive, personalized approach capable of providing comprehensive, real-time monitoring of tumor heterogeneity and evolution, there has been wide interest in the concept of using circulating tumor DNA (ctDNA) to predict treatment response.

View Article and Find Full Text PDF

Introduction Acute appendicitis is a common surgical emergency that requires a timely and accurate diagnosis to prevent complications. Several laboratory markers have been assessed to improve the diagnostic accuracy of acute appendicitis, including C-reactive protein (CRP), white blood cell (WBC) count, and cytokines like interleukins and tumor necrosis factor-alpha. One less commonly used but potentially valuable marker is the mean platelet volume (MPV), which indicates the size of circulating platelets and has the potential to serve as a biomarker for inflammatory conditions.

View Article and Find Full Text PDF

Disseminated intravascular coagulation (DIC) is a hematological disorder characterized by the abnormal activation of the coagulation system, which leads to widespread clotting and subsequent consumption coagulopathy. DIC is often associated with the progression of prostate cancer and can be a life-threatening condition. In this case report, we present a patient with recurrent DIC in the setting of advanced prostate cancer.

View Article and Find Full Text PDF

To explore whether ultra-sensitive circulating tumor DNA (ctDNA) profiling enables early prediction of treatment response and early detection of disease progression, we applied NeXT Personal, an ultra-sensitive bespoke tumor-informed liquid biopsy platform, to profile tumor samples from the KeyLargo study, a phase II trial in which metastatic esophagogastric cancer (mEGC) patients received capecitabine, oxaliplatin, and pembrolizumab. All 25 patients evaluated were ctDNA-positive at baseline. Minimal residual disease (MRD) events varied from 406,067 down to 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!