The zebrafish is a valuable model organism for studying cardiac development and diseases due to its many shared aspects of genetics and anatomy with humans and ease of experimental manipulations. Computational fluid-structure interaction (FSI) simulations are an efficient and highly controllable means to study the function of cardiac valves in development and diseases. Due to their small scales, little is known about the mechanical properties of zebrafish cardiac valves, limiting existing computational studies of zebrafish valves and their interaction with blood. To circumvent these limitations, we took a largely first-principles approach called design-based elasticity that allows us to derive valve geometry, fiber orientation and material properties. In FSI simulations of an adult zebrafish aortic valve, these models produce realistic flow rates when driven by physiological pressures and demonstrate the spatiotemporal dynamics of valvular mechanical properties. These models can be used for future studies of zebrafish cardiac hemodynamics, development, and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703323PMC

Publication Analysis

Top Keywords

fluid-structure interaction
8
zebrafish aortic
8
aortic valve
8
development diseases
8
fsi simulations
8
cardiac valves
8
mechanical properties
8
zebrafish cardiac
8
studies zebrafish
8
zebrafish
6

Similar Publications

Background: High-field magnetic resonance imaging (MRI) is a powerful diagnostic tool but can induce unintended physiological effects, such as nystagmus and dizziness, potentially compromising the comfort and safety of individuals undergoing imaging. These effects likely result from the Lorentz force, which arises from the interaction between the MRI's static magnetic field and electrical currents in the inner ear. Yet, the Lorentz force hypothesis fails to explain observed eye movement patterns in healthy adults fully.

View Article and Find Full Text PDF

Many swimmers, especially small- to medium-sized animals, use intermittent locomotion that differs from continuous swimming of large species. This type of locomotion, called burst and coast, is often associated with an energetic advantage. In this work, we investigate the intermittent locomotion inspired by fish locomotion but applied to a propeller.

View Article and Find Full Text PDF

Background: Left ventricular assist device (LVAD) has been widely used as an alternative treatment for heart failure, however, aortic regurgitation is a common complication in patients with LVAD support. And the O-A angle (the angle between LVAD outflow graft and the aorta) is considered as a vital factor associated with the function of aortic valve. To date, the biomechanical effect of the O-A angle on the aortic valve remains largely unknown.

View Article and Find Full Text PDF

Aortic dissection continues to be responsible for significant morbidity and mortality, although recent advances in medical data assimilation and in experimental and models have improved our understanding of the initiation and progression of the accumulation of blood within the aortic wall. Hence, there remains a pressing necessity for innovative and enhanced models to more accurately characterize the associated pathological changes. Early on, experimental models were employed to uncover mechanisms in aortic dissection, such as hemodynamic changes and alterations in wall microstructure, and to assess the efficacy of medical implants.

View Article and Find Full Text PDF

Comparative analysis of airflow dynamics and sputum expulsion during cough in healthy and bronchial stenosis respiratory tract.

Comput Methods Biomech Biomed Engin

January 2025

Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments Micro-Tech (Nanjing) Co., Ltd, Nanjing, Jiangsu Province, China.

Bronchial stenosis impacts cough mechanisms and respiratory function. This study used MIMICS and Fluent to construct and simulate a 3D airway model of an elderly female patient with bronchial stenosis. Utilizing dynamic mesh and fluid-structure interaction, airflow during coughing was analyzed, including velocity, wall shear stress, and deformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!