Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood. In this study, aged Siglec-11 transgenic (tg) mice, which expressed the human SIGLEC-11 receptor on microglia and tissue macrophages, were investigated. The brains of the Siglec-11 tg mice were analyzed in 6-month-old mature mice and 24-month-old aged mice using immunohistochemistry and transcriptomics. Results showed decreased density and fewer clusters of ionized calcium binding adaptor molecule 1 (Iba1)-positive microglial cells in the hippocampus and substantia nigra, as well as less lipid-laden microglia in the Siglec-11 tg in comparison to wildtype (WT) controls. Additionally, Siglec-11 tg mice exhibited less age-related neuronal loss in the substantia nigra in comparison to WT mice. Transcriptome analysis revealed suppression of oxidative phosphorylation and inflammatory pathways in Siglec-11 tg brains at 6 months, with further suppression of complement and coagulation cascades at 24 months of age in comparison to WT mice. Gene transcript levels of the pro-inflammatory cytokines () and () as well as the oxidative stress markers and ( and ) and the nitric oxide synthase 2 (), were reduced in the brains of 24-month-old Siglec-11 tg mice relative to WT controls. Brains of 24-month-old Siglec-11 tg mice also exhibited lower gene transcription of complement components 3, 4, and integrin alpha M ( and ), along with the complement C1q subcomponents a-c (, and ). In summary, aged Siglec-11 tg mice displayed reduced brain inflammation and oxidative stress, as well as protection against age-related neuronal loss in the substantia nigra.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11701055 | PMC |
http://dx.doi.org/10.3389/fnins.2024.1504765 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!