Existing image fusion methods primarily focus on complex network structure designs while neglecting the limitations of simple fusion strategies in complex scenarios. To address this issue, this study proposes a new method for infrared and visible image fusion based on a multimodal large language model. The method proposed in this paper fully considers the high demand for semantic information in enhancing image quality as well as the fusion strategies in complex scenes. We supplement the features in the fusion network with information from the multimodal large language model and construct a new fusion strategy. To achieve this goal, we design CLIP-driven Information Injection (CII) approach and CLIP-guided Feature Fusion (CFF) strategy. CII utilizes CLIP to extract robust image features rich in semantic information, which serve to supplement the information of infrared and visible features, thereby enhancing their representation capabilities for the scene. CFF further utilizes the robust image features extracted by CLIP to select and fuse the infrared and visible features after the injection of semantic information, addressing the challenges of image fusion in complex scenes. Compared to existing methods, the main advantage of the proposed method lies in leveraging the powerful semantic understanding capabilities of the multimodal large language model to supplement information for infrared and visible features, thus avoiding the need for complex network structure designs. Experimental results on multiple public datasets validate the effectiveness and superiority of the proposed method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700996PMC
http://dx.doi.org/10.3389/fnbot.2024.1521603DOI Listing

Publication Analysis

Top Keywords

infrared visible
20
multimodal large
16
large language
16
image fusion
16
language model
12
visible features
12
fusion
9
visible image
8
complex network
8
network structure
8

Similar Publications

Multi-modal systems extract information about the environment using specialized sensors that are optimized based on the wavelength of the phenomenology and material interactions. To maximize the entropy, complementary systems operating in regions of non-overlapping wavelengths are optimal. VIS-IR (Visible-Infrared) systems have been at the forefront of multi-modal fusion research and are used extensively to represent information in all-day all-weather applications.

View Article and Find Full Text PDF

We demonstrate high-resolution single-pixel imaging (SPI) in the visible and near-infrared wavelength ranges using an SPI framework that incorporates a novel, dedicated sampling scheme and a reconstruction algorithm optimized for the rapid imaging of highly sparse scenes at the native digital micromirror device (DMD) resolution of 1024 × 768. The reconstruction algorithm consists of two stages. In the first stage, the vector of SPI measurements is multiplied by the generalized inverse of the measurement matrix.

View Article and Find Full Text PDF

The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study.

View Article and Find Full Text PDF

Background/objectives: The use of natural colourants is gaining attention due to their biocompatibility and functional benefits. This study introduces a different approach using turmeric ( L.) dye extract combined with chitosan to significantly enhance the antibacterial and UV-shielding properties of silk.

View Article and Find Full Text PDF

Sustainable Carbon Dots Loaded into Carboxymethylcellulose Based Hydrogels for Uterine Cancer Bioimaging.

Pharmaceutics

November 2024

iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal.

: The development of innovative materials for disease diagnostics and therapeutics is a fast-growing area of scientific research. In this work, we report the development of innovative hydrogels incorporating carbon dots (Cdots) for bioimaging purposes. : The Cdots were prepared using a sustainable and low-cost process, starting with an underused fiber from the Brazilian semiarid region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!