A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detecting Clinically Relevant Topological Structures in Multiplexed Spatial Proteomics Imaging Using TopKAT. | LitMetric

Novel multiplexed spatial proteomics imaging platforms expose the spatial architecture of cells in the tumor microenvironment (TME). The diverse cell population in the TME, including its spatial context, has been shown to have important clinical implications, correlating with disease prognosis and treatment response. The accelerating implementation of spatial proteomic technologies motivates new statistical models to test if cell-level images associate with patient-level endpoints. Few existing methods can robustly characterize the geometry of the spatial arrangement of cells and also yield both a valid and powerful test for association with patient-level outcomes. We propose a topology-based approach that combines persistent homology with kernel testing to determine if topological structures created by cells predict continuous, binary, or survival clinical endpoints. We term our method TopKAT (Topological Kernel Association Test) and show that it can be more powerful than statistical tests grounded in the spatial point process model, particularly when cells arise along the boundary of a ring. We demonstrate the properties of TopKAT through simulation studies and apply it to two studies of triple negative breast cancer where we show that TopKAT recovers clinically relevant topological structures in the spatial distribution of immune and tumor cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702633PMC
http://dx.doi.org/10.1101/2024.12.18.628976DOI Listing

Publication Analysis

Top Keywords

topological structures
12
clinically relevant
8
relevant topological
8
spatial
8
multiplexed spatial
8
spatial proteomics
8
proteomics imaging
8
cells
5
detecting clinically
4
topological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!