Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Comprehensive global proteome profiling that is amenable to high throughput processing will broaden our understanding of complex biological systems. Here, we evaluated two leading mass spectrometry techniques, Data Independent Acquisition (DIA) and Tandem Mass Tagging (TMT), for extensive protein abundance profiling. DIA provides label-free quantification with a broad dynamic range, while TMT enables multiplexed analysis using isobaric tags for efficient cross-sample comparisons. We analyzed 18 samples, including four cell lines (IHCF, HCT116, HeLa, MCF7) under standard growth conditions, in addition to IHCF treated with two H₂O₂ concentrations, all in triplicate. Experiments were conducted on an Orbitrap Astral mass spectrometer, employing Field Asymmetric Ion Mobility Spectrometry (FAIMS). Despite utilizing different acquisition strategies, both the DIA and TMT approaches achieved comparable proteome depth and quantitative consistency, with each method quantifying over 10,000 proteins across all samples, with slightly more protein-level precision for the TMT strategy. Relative abundance correlation analysis showed strong agreement at both peptide and protein levels. Our findings highlight the complementary strengths of DIA and TMT for high-coverage proteomic studies, providing flexibility in method selection based on specific experimental needs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702835 | PMC |
http://dx.doi.org/10.1101/2024.12.17.628765 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!