Drugs must accumulate at their target site to be effective, and inadequate uptake of drugs is a substantial barrier to the design of potent therapies. This is particularly true in the development of antibiotics, as bacteria possess numerous barriers to prevent chemical uptake. Designing compounds that circumvent bacterial barriers and accumulate to high levels in cells could dramatically improve the success rate of antibiotic candidates. However, a comprehensive understanding of which chemical structures promote or prevent drug uptake is currently lacking. Here we use liquid chromatography-mass spectrometry to measure accumulation of 1528 approved drugs in , a highly drug-resistant, opportunistic pathogen. We find that simple chemical properties fail to effectively predict drug accumulation in mycobacteria. Instead, we use our data to train deep learning models that predict drug accumulation in with high accuracy, including for chemically diverse compounds not included in our original drug library. We find that differential drug uptake is a critical determinant of the efficacy of drugs currently in development and can identify compounds which accumulate well and have antibacterial activity in . These predictive algorithms can be an important complement to chemical synthesis and accumulation assays in the evaluation of drug candidates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702553 | PMC |
http://dx.doi.org/10.1101/2024.12.15.628588 | DOI Listing |
Pharm Dev Technol
January 2025
Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection.
View Article and Find Full Text PDFDrugs must accumulate at their target site to be effective, and inadequate uptake of drugs is a substantial barrier to the design of potent therapies. This is particularly true in the development of antibiotics, as bacteria possess numerous barriers to prevent chemical uptake. Designing compounds that circumvent bacterial barriers and accumulate to high levels in cells could dramatically improve the success rate of antibiotic candidates.
View Article and Find Full Text PDFHealth Econ Policy Law
January 2025
Department of Political Science, Texas A&M University, College Station, TX, USA.
Ozempic and related semaglutide drugs represent a popular new strategy to address obesity in the United States, yet uptake of these medications has sparked opposition highlighting concerns about off-label drug use policies, drug safety, supply shortages and cost. Public attitudes towards off-label prescribing by physicians broadly, and towards Ozempic in particular, in light of this opposition are unclear. To better understand public sentiment on this topic, we analysed data from a representative survey of 3,420 US adults conducted from 13 to 22 June 2023.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany.
Hybrid hydrogels are promising for wound dressing, tissue engineering, and drug delivery due to their exceptional biocompatibility and mechanical stability. This study synthesized hybrid hydrogels for photodynamic therapy using electron beam-initiated polymerization with varying PEGDA/gelatin ratios and irradiation doses to evaluate their effectiveness as uptake and release systems for five photosensitizers. Toluidine blue, O (TBO); methylene blue (MB); eosin, Y; indocyanine, green; and sodium meso-tetraphenylporphine-4,4',4″,4‴-tetrasulfonate were studied for their uptake and release dynamics in relation to their structural properties and the hydrogels' composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!