Endosomes are a central sorting hub for membrane cargos. DNAJC13/RME-8 plays a critical role in endosomal trafficking by regulating the endosomal recycling or degradative pathways. DNAJC13 localizes to endosomes through its N-terminal Plekstrin Homology (PH)-like domain, which directly binds endosomal phosphoinositol-3-phosphate (PI(3)P). However, little is known about how DNAJC13 localization is regulated. Here, we show that two regions within DNAJC13, its J domain and disordered C-terminal tail, act as negative regulators of its PH-like domain. Using a structure-function approach combined with quantitative proteomics, we mapped these control points to a conserved YLT motif in the C-terminal tail as well as the catalytic HPD triad in its J domain. Mutation of either motif enhanced DNAJC13 endosomal localization in cells and increased binding to PI(3)P . Further, these effects required the N-terminal PH-like domain. We show that, similar to other PI(3)P binding domains, the N-terminal PH-like domain binds PI(3)P weakly in isolation and requires oligomerization for efficient PI(3)P binding and endosomal localization. Together, these results demonstrate that interaction between DNAJC13 and PI(3)P serves as a molecular control point for regulating DNAJC13 localization to endosomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702692 | PMC |
http://dx.doi.org/10.1101/2024.12.19.629517 | DOI Listing |
bioRxiv
December 2024
Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA.
Endosomes are a central sorting hub for membrane cargos. DNAJC13/RME-8 plays a critical role in endosomal trafficking by regulating the endosomal recycling or degradative pathways. DNAJC13 localizes to endosomes through its N-terminal Plekstrin Homology (PH)-like domain, which directly binds endosomal phosphoinositol-3-phosphate (PI(3)P).
View Article and Find Full Text PDFFunction (Oxf)
July 2024
Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
The proton pumping V-ATPase drives essential biological processes, such as acidification of intracellular organelles. Critically, the V-ATPase domains, V1 and VO, must assemble to produce a functional holoenzyme. V-ATPase dysfunction results in cancer, neurodegeneration, and diabetes, as well as systemic acidosis caused by reduced activity of proton-secreting kidney intercalated cells (ICs).
View Article and Find Full Text PDFBlood
May 2024
Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
Acute lymphoblastic leukemia (ALL) with fusions of ABL-class tyrosine kinase genes other than BCR::ABL1 occurs in ∼3% of children with ALL. The tyrosine kinase genes involved in this BCR::ABL1-like (Ph-like) subtype include ABL1, PDGFRB, ABL2, and CSF1R, each of which has up to 10 described partner genes. ABL-class ALL resembles BCR::ABL1-positive ALL with a similar gene expression profile, poor response to chemotherapy, and sensitivity to tyrosine kinase inhibitors (TKIs).
View Article and Find Full Text PDFNPJ Precis Oncol
December 2023
Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
Indian J Pediatr
January 2024
Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India.
Philadelphia chromosome positive (Ph+) acute lymphoblastic lymphoma (ALL) is an uncommon subtype of ALL in children, seen in 2-5% cases. Diagnostic evaluation includes conventional karyotyping and detection of BCR-ABL1 translocation by fluorescence in-situ hybridization (FISH) or reverse transcriptase polymerase chain reaction (RT-PCR). For children, the frontline management includes combination of intensive chemotherapy along with imatinib (300-340 mg/m/d) or dasatinib (60-80 mg/m/d).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!