Maternal stress during pregnancy, or prenatal stress, is a risk factor for neurodevelopmental disorders in offspring, including autism spectrum disorder (ASD). In ASD, dorsal striatum displays abnormalities correlating with symptom severity, but there is a gap in knowledge about dorsal striatal cellular and molecular mechanisms that may contribute. Using a mouse model, we investigated how prenatal stress impacted striatal-dependent behavior in adult offspring. We observed enhanced motor learning and earlier response times on an interval timing task, with accompanying changes in time-related medium spiny neuron (MSN) activity. We performed adult dorsal striatal single-cell RNA sequencing following prenatal stress which revealed differentially expressed genes (DEGs) in multiple cell types; downregulated DEGs were enriched for ribosome and translational pathways consistently in MSN subtypes, microglia, and somatostatin neurons. DEGs in MSN subtypes over-represented ASD risk genes and were enriched for synapse-related processes. These results provide insights into striatal alterations relevant to neurodevelopmental disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703269 | PMC |
http://dx.doi.org/10.1101/2024.12.27.627207 | DOI Listing |
Semin Immunopathol
January 2025
Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Overweight and obesity (OWO) are linked to dyslipidemia and low-grade chronic inflammation, which is fueled by lipotoxicity and oxidative stress. In the context of pregnancy, maternal OWO has long been known to negatively impact on pregnancy outcomes and maternal health, as well as to imprint a higher risk for diseases in offspring later in life. Emerging research suggests that individual lipid metabolites, which collectively form the lipidome, may play a causal role in the pathogenesis of OWO-related diseases.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Biomedical and Translational Sciences Institute, Neuroscience Division, Athens, GA, United States.
Significance: Women are at increased risk for mood disorders, which may be partly attributed to exposure to endocrine-disrupting chemicals (EDCs) during sensitive periods such as pregnancy. Exposure during these times can impact brain development in the offspring, potentially leading to mood disorders in later life. Additionally, fluctuating levels of endogenous estrogens, as seen during pregnancy, or the use of oral contraceptives, can further elevate this risk.
View Article and Find Full Text PDFBMC Med
January 2025
PsychGen Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway.
Background: Maternal stress during pregnancy may impact offspring development via changes in the intrauterine environment. However, genetic and environmental factors shared between mothers and children might skew our understanding of this pathway. This study assesses whether prenatal maternal stress has causal links to offspring outcomes: birthweight, gestational age, or emotional and behavioral difficulties, triangulating across methods that account for various measured and unmeasured confounders.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Behavioral Ecology Department, University of Goettingen, Goettingen, Germany.
The hypothalamic-pituitary-adrenal (HPA) axis plays a dual role in the biology of developmental plasticity in mammals, including humans-HPA axis activity not only provides the input for, but is also a target of, offspring developmental plasticity. To investigate the understudied effects of exposure timing, this study quantified maternal HPA axis activity during each half of gestation as well as during early lactation and assessed its effect on offspring HPA axis activity in a cross-sectional sample of infant, juvenile and adult Assamese macaques (). To add ecological validity to experimental studies under laboratory conditions, macaques were studied in the wild.
View Article and Find Full Text PDFToxicol Sci
January 2025
Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.
Prenatal exposure to the toxic metal inorganic arsenic (iAs) is associated with adverse pregnancy and fetal growth outcomes. These adverse outcomes are tied to physiological disruptions in the placenta. While iAs co-occurs in the environment with other metals such as manganese (Mn), there is a gap in the knowledge of the effects of metal-mixtures on the placenta.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!