Truncated TrkB (TrkBT1), traditionally considered a dominant-negative regulator of full-length TrkB (TrkBTK+), remains poorly understood in peripheral sensory neurons, particularly nociceptors. Furthermore, sensory neuronal TrkB expression and function has been traditionally associated with non-nociceptive neurons, particularly Aδ low-threshold mechanoreceptors. This study challenges prevailing assumptions by demonstrating that TrkBT1 is the predominant TrkB isoform expressed in sensory neurons and plays a functional role in modulating neuronal activity. We demonstrate that TrkBT1 is the predominant isoform expressed in nociceptors, identified by markers such as TRPV1, TRPA1, TRPM8 and 5HT3A, as well as non-nociceptors, while the full-length isoform (TrkBTK+) is restricted to non-nociceptive subpopulation. Functionally, we show that acute application of BDNF induces modest calcium influx in nociceptors and prolonged BDNF exposure significantly potentiates capsaicin-induced calcium influx, an effect blocked by the TrkB-specific antagonist ANA12. Additionally, BDNF also promotes the survival of both nociceptive and non-nociceptive neurons in culture, an effect dependent on TrkBT1 activity. Our data also reveal that ANA12 inhibits BDNF-mediated neuronal sensitization and survival in a concentration-dependent manner, implicating distinct TrkBT1 signaling pathways in these processes. Collectively, our findings redefine TrkBT1 as a functional modulator of nociceptor activity rather than a passive regulator of full-length TrkB. By uncovering its dual roles in nociceptor sensitization and survival, this study provides new insights into the molecular mechanisms of BDNF/TrkB signaling in pain. Future work evaluating the role of TrkBT1 in sensory biology could offer new perspectives on how this receptor contributes to neuronal function and plasticity during chronic pain conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703233 | PMC |
http://dx.doi.org/10.1101/2024.12.27.630513 | DOI Listing |
bioRxiv
December 2024
Center for Pain Therapeutics and Addiction Research, School of Dentistry, University of Texas Health San Antonio, Texas, 78229, USA.
Truncated TrkB (TrkBT1), traditionally considered a dominant-negative regulator of full-length TrkB (TrkBTK+), remains poorly understood in peripheral sensory neurons, particularly nociceptors. Furthermore, sensory neuronal TrkB expression and function has been traditionally associated with non-nociceptive neurons, particularly Aδ low-threshold mechanoreceptors. This study challenges prevailing assumptions by demonstrating that TrkBT1 is the predominant TrkB isoform expressed in sensory neurons and plays a functional role in modulating neuronal activity.
View Article and Find Full Text PDFGenet Med
November 2024
Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany. Electronic address:
Introduction: Heterozygous pathogenic variants in NTRK2 (HGNC: 8032) have been associated with global developmental delay. However, only scattered cases have been described in small or general studies. The aim of our work was to consolidate our understanding of NTRK2-related disorders and to delineate the clinical presentation METHODS: We report extended cohort of 44 affected individuals, of whom 19 are from the literature and 25 were previously unreported.
View Article and Find Full Text PDFBiol Pharm Bull
November 2024
Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare.
Perisynaptic astrocyte processes (PAPs) contact pre- and post-synaptic elements to provide structural and functional support to synapses. Accumulating research demonstrates that the cradling of synapses by PAPs is critical for synapse formation, stabilization, and plasticity. The specific signaling pathways that govern these astrocyte-synapse interactions, however, remain to be elucidated.
View Article and Find Full Text PDFExp Gerontol
November 2023
Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
Alzheimer's disease is associated with a loss of plasticity and cognitive functioning. Previous research has shown that repetitive transcranial magnetic stimulation (rTMS) boosts cortical neurotrophic factors, potentially addressing this loss. The current study aimed to expand these findings by measuring brain-derived neurotrophic factor (BDNF), its downstream hippocampal signaling molecules, and behavioral effects of rTMS on the 3xTg-AD mouse line.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!