Background: Cachexia is defined by chronic loss of fat and muscle, is a frequent complication of pancreatic ductal adenocarcinoma (PDAC), and negatively impacts patient outcomes. Nutritional supplementation cannot fully reverse tissue wasting, and the mechanisms underlying this phenotype are unclear. This work aims to define the relative contributions of catabolism and anabolism to adipose wasting in PDAC-bearing mice. Human antigen R (HuR) is an RNA-binding protein recently shown to suppress adipogenesis. We hypothesize that fat wasting results from a loss of adipose anabolism driven by increased HuR activity in adipocytes of PDAC-bearing mice.

Methods: Adult C57BL/6J mice received orthotopic PDAC cell ( ) (OT-PDAC) or PBS (sham) injections. Mice exhibiting moderate cachexia (9 days after injection) were fasted for 24h, or fasted 24h and refed 24h before euthanasia. A separate cohort of PDAC mice were treated with an established HuR inhibitor (KH-3, 100 mg/kg) and subjected to the fast/refeed paradigm. We analyzed body mass, gross fat pad mass, and adipose tissue mRNA expression. We quantified lipolytic rate as the normalized quantity of glycerol released from 3T3-L1 adipocytes , and gonadal fat pads (gWAT) .

Results: 3T3-L1 adipocytes treated with PDAC cell conditioned media (CM) liberated less triglyceride into the culture media than control-treated adipocytes (-28.1%) and had lower expression of lipolysis and lipogenesis genes than control cells. PDAC gWAT cultured displayed decreased lipolysis compared to sham gWAT (-54.7%). PDAC and sham mice lost equivalent fat mass after a 24h fast, however, PDAC mice could not restore inguinal fat pads (iWAT) (-40.5%) or gWAT (-31.8%) mass after refeeding. RNAseq revealed 572 differentially expressed genes in gWAT from PDAC compared to sham mice. Downregulated genes (n=126) were associated with adipogenesis (adj p=0.05), and expression of adipogenesis master regulators and were reduced in gWAT from PDAC mice. Immunohistochemistry revealed increased HuR staining in gWAT (+74.9%) and iWAT (+41.2%) from PDAC mice. Inhibiting HuR binding restored lipogenesis in refed animals with a concomitant increase in iWAT mass (+131.7%) and genes regulating adipogenesis ( , , , , ).

Conclusions: Our work highlights deficient adipose anabolism as a driver of wasting in 3T3-L1 adipocytes treated with PDAC conditioned media and OT-PDAC mice. The small molecule KH3, which disrupts HuR binding, was sufficient to restore adipogenic and lipogenic gene expression and prevent adipose wasting. This highlights HuR as a potentially targetable regulatory node for adipose anabolism in cancer cachexia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703191PMC
http://dx.doi.org/10.1101/2024.12.27.630549DOI Listing

Publication Analysis

Top Keywords

pdac mice
16
adipose anabolism
12
3t3-l1 adipocytes
12
pdac
11
mice
10
rna-binding protein
8
hur
8
adipose tissue
8
cancer cachexia
8
adipose wasting
8

Similar Publications

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a notably poor response to therapy due to its immunosuppressive tumor microenvironment (TME) and intrinsic drug resistance. The oncolytic virus (OV) represents a promising therapeutic strategy capable of transforming the "cold" immunological profile of PDAC tumors to a "hot" one by reshaping the TME. 4-1BB (CD137), a crucial member of the tumor necrosis factor receptor superfamily, plays a significant role in T-cell activation and function.

View Article and Find Full Text PDF

The Chansu injection (CSI), a sterile aqueous solution derived from Chansu, is applied in clinical settings to support antitumor and anti-radiation treatments. CSI's principal active components, bufadienolides (≥90%), demonstrate potential effects on pancreatic cancer (PDAC), but their underlying mechanisms remain unclear. This study aimed to elucidate the antitumor effects and pathways associated with CSI in PDAC.

View Article and Find Full Text PDF

Enhanced safety and efficacy profile of CD40 antibody upon encapsulation in pHe-triggered membrane-adhesive nanoliposomes.

Nanomedicine (Lond)

January 2025

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.

Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.

Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.

View Article and Find Full Text PDF

Background: Cachexia is defined by chronic loss of fat and muscle, is a frequent complication of pancreatic ductal adenocarcinoma (PDAC), and negatively impacts patient outcomes. Nutritional supplementation cannot fully reverse tissue wasting, and the mechanisms underlying this phenotype are unclear. This work aims to define the relative contributions of catabolism and anabolism to adipose wasting in PDAC-bearing mice.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) displays a high degree of spatial subtype heterogeneity and co-existence, linked to a diverse microenvironment and worse clinical outcome. However, the underlying mechanisms remain unclear. Here, by combining preclinical models, multi-center clinical, transcriptomic, proteomic, and patient bioimaging data, we identify an interplay between neoplastic intrinsic AP1 transcription factor dichotomy and extrinsic macrophages driving subtype co-existence and an immunosuppressive microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!