Functional specialization of the subdomains of a bactofilin driving stalk morphogenesis in .

bioRxiv

Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal (Québec) H3C 3J7, Canada.

Published: December 2024

Bactofilins are a recently discovered class of cytoskeletal protein, widely implicated in subcellular organization and morphogenesis in bacteria and archaea. Several lines of evidence suggest that bactofilins polymerize into filaments using a central β-helical core domain, flanked by variable N- and C-terminal domains that may be important for scaffolding and other functions. However, a systematic exploration of the characteristics of these domains has yet to be performed. In , the bactofilin BacA serves as a topological organizer of stalk synthesis, localizing to the stalk base and coordinating the synthesis of these long, thin extensions of the cell envelope. The easily distinguishable phenotypes of wild-type "pseudostalks" make this an ideal system for investigating how mutations in BacA affect its functions in morphogenesis. Here, we redefine the core domain of BacA using various bioinformatics and biochemical approaches to precisely delimit the N- and C- terminal domains. We then show that loss of these terminal domains leads to cells with severe morphological abnormalities, typically presenting a pseudostalk phenotype. BacA mutants lacking the N- and C- terminal domains also exhibit localization defects, implying that the terminal domains of BacA may be involved in its subcellular positioning, whether through membrane interactions through the N-terminal domain or through interactions with the stalk-specific morphological regulator SpmX through the C-terminal domain. We further show that point mutations that render BacA defective for polymerization lead to stalk synthesis defects. Overall, our study suggests that BacA's polymerization, membrane association, and interactions with other morphological factors all play a crucial role in the protein's function as a morphogenic regulator. The specialization and modularity of the terminal domains may underlie the remarkable functional versatility of the bactofilins in different species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702518PMC
http://dx.doi.org/10.1101/2024.12.16.628611DOI Listing

Publication Analysis

Top Keywords

terminal domains
20
core domain
8
stalk synthesis
8
domains
7
baca
6
terminal
5
functional specialization
4
specialization subdomains
4
subdomains bactofilin
4
bactofilin driving
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!