Aging results in a progressive decline in physiological function due to the deterioration of essential biological processes, such as transcription and RNA splicing, ultimately increasing mortality risk. Although proteomics is emerging as a powerful tool for elucidating the molecular mechanisms of aging, existing studies are constrained by limited proteome coverage and only observe a narrow range of lifespan. To overcome these limitations, we integrated the Orbitrap Astral Mass Spectrometer with the multiplex tandem mass tag (TMT) technology to profile the proteomes of three brain tissues (cortex, hippocampus, striatum) and kidney in the C57BL/6JN mouse model, achieving quantification of 8,954 to 9,376 proteins per tissue (cumulatively 12,749 across all tissues). Our sample population represents balanced sampling across both sexes and three age groups (3, 12, and 20 months), comprising young adulthood to early late life (approximately 20-60 years of age for human lifespan). To enhance quantitative accuracy, we developed a peptide filtering strategy based on resolution and signal-to-noise thresholds. Our analysis uncovered distinct tissue-specific patterns of protein abundance, with age and sex differences in the kidney, while brain tissues exhibit notable age changes and limited sex differences. In addition, we identified both proteomic changes that are linear with age (i.e., continuous) and that have a non-linear pattern (i.e., non-continuous), revealing complex protein dynamics over the adult lifespan. Integrating our findings with early developmental proteomic data from brain tissues highlighted further divergent age-related trajectories, particularly in synaptic proteins. This study not only provides a robust data analysis workflow for TMT datasets generated using the Orbitrap Astral mass spectrometer but also expands the proteomic landscape of aging, capturing proteins with age and sex effects with unprecedented depth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702764 | PMC |
http://dx.doi.org/10.1101/2024.12.13.628374 | DOI Listing |
Comprehensive global proteome profiling that is amenable to high throughput processing will broaden our understanding of complex biological systems. Here, we evaluated two leading mass spectrometry techniques, Data Independent Acquisition (DIA) and Tandem Mass Tagging (TMT), for extensive protein abundance profiling. DIA provides label-free quantification with a broad dynamic range, while TMT enables multiplexed analysis using isobaric tags for efficient cross-sample comparisons.
View Article and Find Full Text PDFAging results in a progressive decline in physiological function due to the deterioration of essential biological processes, such as transcription and RNA splicing, ultimately increasing mortality risk. Although proteomics is emerging as a powerful tool for elucidating the molecular mechanisms of aging, existing studies are constrained by limited proteome coverage and only observe a narrow range of lifespan. To overcome these limitations, we integrated the Orbitrap Astral Mass Spectrometer with the multiplex tandem mass tag (TMT) technology to profile the proteomes of three brain tissues (cortex, hippocampus, striatum) and kidney in the C57BL/6JN mouse model, achieving quantification of 8,954 to 9,376 proteins per tissue (cumulatively 12,749 across all tissues).
View Article and Find Full Text PDFCapillary zone electrophoresis (CZE) is gaining attention in the field of single-cell proteomics for its ultra-low-flow and high-resolution separation abilities. Even more sample-limited yet rich in biological information are phosphoproteomics experiments, as the phosphoproteome composes only a fraction of the whole cellular proteome. Rapid analysis, high sensitivity, and maximization of sample utilization are paramount for single-cell analysis.
View Article and Find Full Text PDFFood Chem
February 2025
College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China. Electronic address:
This study provides insights into the composition and in-situ structures of the milk fat globule membrane (MFGM) in buffalo milk with different fat globule sizes (0.55 μm and 8.04 μm).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!