Aging results in a progressive decline in physiological function due to the deterioration of essential biological processes, such as transcription and RNA splicing, ultimately increasing mortality risk. Although proteomics is emerging as a powerful tool for elucidating the molecular mechanisms of aging, existing studies are constrained by limited proteome coverage and only observe a narrow range of lifespan. To overcome these limitations, we integrated the Orbitrap Astral Mass Spectrometer with the multiplex tandem mass tag (TMT) technology to profile the proteomes of three brain tissues (cortex, hippocampus, striatum) and kidney in the C57BL/6JN mouse model, achieving quantification of 8,954 to 9,376 proteins per tissue (cumulatively 12,749 across all tissues). Our sample population represents balanced sampling across both sexes and three age groups (3, 12, and 20 months), comprising young adulthood to early late life (approximately 20-60 years of age for human lifespan). To enhance quantitative accuracy, we developed a peptide filtering strategy based on resolution and signal-to-noise thresholds. Our analysis uncovered distinct tissue-specific patterns of protein abundance, with age and sex differences in the kidney, while brain tissues exhibit notable age changes and limited sex differences. In addition, we identified both proteomic changes that are linear with age (i.e., continuous) and that have a non-linear pattern (i.e., non-continuous), revealing complex protein dynamics over the adult lifespan. Integrating our findings with early developmental proteomic data from brain tissues highlighted further divergent age-related trajectories, particularly in synaptic proteins. This study not only provides a robust data analysis workflow for TMT datasets generated using the Orbitrap Astral mass spectrometer but also expands the proteomic landscape of aging, capturing proteins with age and sex effects with unprecedented depth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702764PMC
http://dx.doi.org/10.1101/2024.12.13.628374DOI Listing

Publication Analysis

Top Keywords

orbitrap astral
12
astral mass
12
brain tissues
12
landscape aging
8
tandem mass
8
mass tag
8
tag tmt
8
mass spectrometer
8
age sex
8
sex differences
8

Similar Publications

Comprehensive global proteome profiling that is amenable to high throughput processing will broaden our understanding of complex biological systems. Here, we evaluated two leading mass spectrometry techniques, Data Independent Acquisition (DIA) and Tandem Mass Tagging (TMT), for extensive protein abundance profiling. DIA provides label-free quantification with a broad dynamic range, while TMT enables multiplexed analysis using isobaric tags for efficient cross-sample comparisons.

View Article and Find Full Text PDF

Aging results in a progressive decline in physiological function due to the deterioration of essential biological processes, such as transcription and RNA splicing, ultimately increasing mortality risk. Although proteomics is emerging as a powerful tool for elucidating the molecular mechanisms of aging, existing studies are constrained by limited proteome coverage and only observe a narrow range of lifespan. To overcome these limitations, we integrated the Orbitrap Astral Mass Spectrometer with the multiplex tandem mass tag (TMT) technology to profile the proteomes of three brain tissues (cortex, hippocampus, striatum) and kidney in the C57BL/6JN mouse model, achieving quantification of 8,954 to 9,376 proteins per tissue (cumulatively 12,749 across all tissues).

View Article and Find Full Text PDF

Capillary zone electrophoresis (CZE) is gaining attention in the field of single-cell proteomics for its ultra-low-flow and high-resolution separation abilities. Even more sample-limited yet rich in biological information are phosphoproteomics experiments, as the phosphoproteome composes only a fraction of the whole cellular proteome. Rapid analysis, high sensitivity, and maximization of sample utilization are paramount for single-cell analysis.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents an optimized workflow for analyzing formalin-fixed, paraffin-embedded (FFPE) patient tissues to uncover molecular insights linked to clinical outcomes, utilizing advanced techniques like Adaptive Focused Acoustics (AFA) and liquid chromatography-tandem mass spectrometry (LC-MS/MS).
  • The method allows for the analysis of up to 96 samples, identifying between 8,000-10,000 unique proteins with a high level of quantitative accuracy (<20% median CVs).
  • Applied to lung adenocarcinoma FFPE blocks, the workflow demonstrates superior deep proteome coverage and efficiency, significantly contributing to biomarker discovery and proteomic research in archived samples.
View Article and Find Full Text PDF

This study provides insights into the composition and in-situ structures of the milk fat globule membrane (MFGM) in buffalo milk with different fat globule sizes (0.55 μm and 8.04 μm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!