β-Lactams are the most widely used antibiotics for the treatment of bacterial infections because of their proven track record of safety and efficacy. However, susceptibility to β-lactam antibiotics is continually eroded by resistance mechanisms. Emerging multidrug-resistant (MDR) strains possessing altered alleles (encoding PBP2) pose a global health emergency as they threaten the utility of ceftriaxone, the last remaining outpatient antibiotic. Here we disclose a novel benzoxaborinine-based penicillin-binding protein inhibitor series (boro-PBPi) that is envisioned to address mediated resistance while offering protection against evolution and expansion of β-lactamases. Optimization of boro-PBPi led to the identification of compound (VNRX-14079) that exhibits potent antibacterial activity against MDR achieved by high affinity binding to the PBP2 target. Boro-PBPi/PBP2 complex structures confirmed covalent interaction of the boron atom with Ser310 and the importance of the β -β loop for improved affinity. elicits bactericidal activity, a low frequency of resistance, a good safety profile, suitable pharmacokinetic properties, and in vivo efficacy in a murine infection model against ceftriaxone-resistant . is a promising anti-gonorrhea agent poised for further advancement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703265PMC
http://dx.doi.org/10.1101/2024.12.27.630553DOI Listing

Publication Analysis

Top Keywords

penicillin-binding protein
8
class penicillin-binding
4
protein inhibitors
4
inhibitors address
4
address drug-resistant
4
drug-resistant β-lactams
4
β-lactams antibiotics
4
antibiotics treatment
4
treatment bacterial
4
bacterial infections
4

Similar Publications

Chlorogenic acid (CGA), a polyhydroxy phenolic acid, has been extensively studied for its antimicrobial properties. () threatens food safety by forming biofilms. This study aimed to investigate the mechanism of CGA against and its biofilm.

View Article and Find Full Text PDF

β-Lactams are the most widely used antibiotics for the treatment of bacterial infections because of their proven track record of safety and efficacy. However, susceptibility to β-lactam antibiotics is continually eroded by resistance mechanisms. Emerging multidrug-resistant (MDR) strains possessing altered alleles (encoding PBP2) pose a global health emergency as they threaten the utility of ceftriaxone, the last remaining outpatient antibiotic.

View Article and Find Full Text PDF

Purpose: To evaluate the clinical characteristics, antimicrobial resistance (AMR) phenotypes and genotypes, and homology features of carbapenem-resistant (CRAB) in intensive care unit (ICU) and to provide basis for effectively prevention, control and treatment of nosocomial infections caused by CRAB.

Methods: A total of 39 CRAB strains isolated from hospitalized patients in the ICU and neurosurgical ICU (NICU) between 2020 and 2023 were subjected to antimicrobial susceptibility testing and whole-genome sequencing (WGS). Virulence factor genes (VFGs), antimicrobial resistance genes (ARGs), multilocus sequencing typing (MLST), complete genome multilocus sequencing typing (cgMLST), average nucleotide identity (ANI), and single nucleotide polymorphism (SNP) analyses were performed using WGS.

View Article and Find Full Text PDF

Type III protein secretion systems (T3SSs) function as multiprotein devices that span the envelope of Gram-negative bacteria using the peptidoglycan (PG) layer as scaffold. This spatial arrangement explains why modifications in PG structure can alter T3SS activity. In incorporation of non-canonical D-amino acids in the PG was shown to decrease the activity of the T3SS encoded by the pathogenicity island-1 (SPI-1) without affecting other T3SS, like the flagellum apparatus.

View Article and Find Full Text PDF

Neisseria gonorrhoeae exhibits alarming antibiotic resistance trends and poses a significant challenge in therapeutic management. This study aimed to explore the association of penA alleles with penicillin-binding protein (PBP) occupancy patterns and reduced outer membrane permeability, impacting susceptibility to last-line cephalosporins and potential β-lactam candidates. The whole genome sequence, the MICs and PBP IC50s were determined for 12 β-lactams and β-lactamase inhibitors in 8 clinical isolates with varying β-lactam sensitivity, 2 ATCC, and 3 WHO cephalosporin-resistant reference strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!