The degeneration of midbrain dopamine (DA) neurons disrupts the neural control of natural behavior, such as walking, posture, and gait in Parkinson's disease. While some aspects of motor symptoms can be managed by dopamine replacement therapies, others respond poorly. Recent advancements in machine learning-based technologies offer opportunities for unbiased segmentation and quantification of natural behavior in both healthy and diseased states. In the present study, we applied the motion sequencing (MoSeq) platform to study the spontaneous locomotor activities of neurotoxin and genetic mouse models of Parkinsonism as the midbrain DA neurons progressively degenerate. We also evaluated the treatment efficacy of levodopa (L-DOPA) on behavioral modules at fine time scales. We revealed robust changes in the kinematics and usage of the behavioral modules that encode spontaneous locomotor activity. Further analysis demonstrates that fast behavioral modules with higher velocities were more vulnerable to loss of DA and preferentially affected at early stages of Parkinsonism. Last, L-DOPA effectively improved the velocity, but not the usage and transition probability, of behavioral modules of Parkinsonian animals. In conclusion, the hypokinetic phenotypes in Parkinsonism are mediated by the decreased velocities of behavioral modules and the disrupted temporal organization of sub-second modules into actions. Moreover, we showed that the therapeutic effect of L-DOPA is mainly mediated by its effect on the velocities of behavior modules at fine time scales. This work documents robust changes in the velocity, usage, and temporal organization of behavioral modules and their responsiveness to dopaminergic treatment under the Parkinsonian state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703164 | PMC |
http://dx.doi.org/10.1101/2024.12.26.630411 | DOI Listing |
Metab Brain Dis
January 2025
Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, P.R. China.
The immune system has emerged as a major factor in the pathogenesis of Alzheimer's disease (AD). PANoptosis is a newly defined programmed cell death mechanism related to many inflammatory diseases. This study aimed to identify the differentially expressed (DE) PANoptosis-related genes with characteristics of immune dysregulation (PRGIDs) in AD using bioinformatics analysis of bulk RNA-seq and single-nuclei RNA sequencing (snRNA-seq) data.
View Article and Find Full Text PDFAm J Nucl Med Mol Imaging
December 2024
Cyclotron and Radiochemistry Core, Karmanos Cancer Institute Detroit, MI, USA.
Colony-stimulating factor 1 receptor (CSF1R) is almost exclusively expressed on microglia in the human brain and thus, has promise as a biomarker for imaging microglia density as a proxy for neuroinflammation. [C]CPPC is a radiotracer with selective affinity to CSF1R, and has been evaluated for in-human microglia PET imaging. The flourine-18 labeled CPPC derivative, 5-cyano-N-(4-(4-(2-[F]fluoroethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide ([F]FCPPC), was previously synthesized, however, with a low radiochemical yield using manual radiosynthesis.
View Article and Find Full Text PDFFront Genet
January 2025
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology, and Emory University), Atlanta, GA, United States.
Introduction: Typical adolescent neurodevelopment is marked by decreases in grey matter (GM) volume, increases in myelination, measured by fractional anisotropy (FA), and improvement in cognitive performance.
Methods: To understand how epigenetic changes, methylation (DNAm) in particular, may be involved during this phase of development, we studied cognitive assessments, DNAm from saliva, and neuroimaging data from a longitudinal cohort of normally developing adolescents, aged nine to fourteen. We extracted networks of methylation with patterns of correlated change using a weighted gene correlation network analysis (WCGNA).
Front Mol Biosci
January 2025
Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
Background: Emerging evidence underscores the comorbidity mechanisms among autoimmune diseases (AIDs), with innovative technologies such as single-cell RNA sequencing (scRNA-seq) significantly advancing the explorations in this field. This study aimed to investigate the shared genes among three AIDs-Multiple Sclerosis (MS), Systemic Lupus Erythematosus (SLE), and Rheumatoid Arthritis (RA) using bioinformatics databases, and to identify potential biomarkers for early diagnosis.
Methods: We retrieved transcriptomic data of MS, SLE, and RA patients from public databases.
Front Genet
January 2025
Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang, China.
Background: Triple-negative breast cancer (TNBC) is a heterogeneous disease with a worse prognosis. Despite ongoing efforts, existing therapeutic approaches show limited success in improving early recurrence and survival outcomes for TNBC patients. Therefore, there is an urgent need to discover novel and targeted therapeutic strategies, particularly those focusing on the immune infiltrate in TNBC, to enhance diagnosis and prognosis for affected individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!