Citri reticulate pericranium-derived extracellular vesicles exert antioxidant and anti-inflammatory properties and enhance the bioactivity of nobiletin by forming EVs-nob nanoparticles.

Front Cell Dev Biol

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.

Published: December 2024

Plant-driven extracellular vesicles (PEVs) have attracted significant interest due to their natural origin, remarkable bioactivity, and efficacy in drug encapsulation and target delivery. In our work, extracellular vesicles from Citri Reticulate Pericranium (CEVs) were isolated and investigated their physicochemical characteristics and biological activities. We identified the vesicle structures as regular, with a particle size of approximately 200 nm. We also detected large quantities of lipids, proteins, carbohydrates, as well as total phenols and total flavonoids. The rich content of CEVs endows them with significant antioxidant and anti-inflammatory effects, which can notably increase the levels of GSH and effectively promote the activity of antioxidant markers such as SOD, CAT, and GR. Additionally, they can inhibit the level of inflammatory markers like NO and inflammatory biological factors (, and ). In addition, we successfully synthesized EVs-nob nanoparticles with a 83.75% ± 2.83% encapsulation rate and 2.79% ± 0.02% drug loading, which may enhance the antioxidant and anti-inflammatory effects of nobiletin. Our research provides critical insights into the bioactivity of CEVs and demonstrates the significant potential of PEVs in nanocarrier creation, thereby promoting the advancement of more PEVs for biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11701001PMC
http://dx.doi.org/10.3389/fcell.2024.1509123DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
12
antioxidant anti-inflammatory
12
citri reticulate
8
evs-nob nanoparticles
8
anti-inflammatory effects
8
reticulate pericranium-derived
4
pericranium-derived extracellular
4
vesicles exert
4
antioxidant
4
exert antioxidant
4

Similar Publications

Combining radiotherapy with targeted therapy benefits patients with advanced epidermal growth factor receptor-mutated non-small cell lung cancer (EGFRm NSCLC). However, the optimal strategy to combine EGFR tyrosine kinase inhibitors (TKIs) with radiotherapy for maximum efficacy and minimal toxicity is still uncertain. Notably, EVs, which serve as communication mediators among tumor cells, play a crucial role in the anti-tumor immune response.

View Article and Find Full Text PDF

Psoriasis is a chronic inflammatory polygenic disease with significant impacts on skin and joints, leading to substantial treatment challenges and healthcare costs. The quest for novel therapeutic avenues has recently highlighted extracellular vesicles (EVs) due to their potential as biomarkers and therapeutic agents in autoimmune diseases, including psoriasis. EVs are nano-sized, lipid membrane-bound particles secreted by cells that have emerged as promising tools for targeted drug delivery, owing to their unique structure.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), including exosomes, are promising pharmaceutical modalities. They are purified from cell culture supernatant; however, the preparation may contain EVs with the desired therapeutic effects and different types of EVs, lipoproteins, and soluble proteins. Evaluating the composition of particulate impurities and the levels of protein impurities in final preparations is critical for quality control.

View Article and Find Full Text PDF

Molecular Targeting of Ischemic Stroke: The Promise of Naïve and Engineered Extracellular Vesicles.

Pharmaceutics

November 2024

Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.

Ischemic stroke (IS) remains a leading cause of mortality and long-term disability worldwide, with limited therapeutic options available. Despite the success of early interventions, such as tissue-type plasminogen activator administration and mechanical thrombectomy, many patients continue to experience persistent neurological deficits. The pathophysiology of IS is multifaceted, encompassing excitotoxicity, oxidative and nitrosative stress, inflammation, and blood-brain barrier disruption, all of which contribute to neural cell death, further complicating the treatment of IS.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are promising biomarkers for diagnosing complex diseases such as cancer and neurodegenerative disorders. Yet, their clinical application is hindered by challenges in isolating cancer-derived EVs efficiently due to their broad size distribution in biological samples. This study introduces a microfluidic device fabricated using off-stoichiometry thiol-ene and cyclic olefin copolymer, addressing the absorption limitations of polydimethylsiloxane (PDMS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!