The construction of coupled electrolysis systems utilizing renewable energy sources for electrocatalytic nitrate reduction and sulfion oxidation reactions (NORR and SOR), is considered a promising approach for environmental remediation, ammonia production, and sulfur recovery. Here, a simple chemical dealloying method is reported to fabricate a hierarchical porous multi-metallic spinel MFeO (M═Ni, Co, Fe, Mn) dual-functional electrocatalysts consisting of Mn-doped porous NiFeO/CoFeO heterostructure networks and Ni/Co/Mn co-doped FeO nanosheet networks. The excellent NORR with high NH Faradaic efficiency of 95.2% at -0.80 V versus reversible hydrogen electrode (vs RHE) and NH yield rate of 608.9 µmol h cm at -1.60 V vs RHE, and impressive SOR performance (100 mA cm V vs RHE) is achieved for MFeO. Key intermediates such as NO, NH, and NH are identified in the NORR process by in situ Fourier transform infrared spectroscopy (in situ FTIR). The MFeO-assembled two-electrode coupling system (NORR||SOR) shows an ultra-low cell voltage of 1.14 V at 10 mA cm, much lower than the NORR||OER (oxygen evolution reaction, 10 mA cm V), simultaneously achieving two expected targets of value-added ammonia generation and sulfur recovery, and also demonstrating high durability of 18 h. This work also demonstrates the great potential of spinel ferrite-based catalysts for environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202411317DOI Listing

Publication Analysis

Top Keywords

sulfion oxidation
8
hierarchical porous
8
spinel mfeo
8
mfeo m═ni
8
environmental remediation
8
sulfur recovery
8
coupling nitrate-to-ammonia
4
nitrate-to-ammonia conversion
4
conversion sulfion
4
oxidation reaction
4

Similar Publications

The construction of coupled electrolysis systems utilizing renewable energy sources for electrocatalytic nitrate reduction and sulfion oxidation reactions (NORR and SOR), is considered a promising approach for environmental remediation, ammonia production, and sulfur recovery. Here, a simple chemical dealloying method is reported to fabricate a hierarchical porous multi-metallic spinel MFeO (M═Ni, Co, Fe, Mn) dual-functional electrocatalysts consisting of Mn-doped porous NiFeO/CoFeO heterostructure networks and Ni/Co/Mn co-doped FeO nanosheet networks. The excellent NORR with high NH Faradaic efficiency of 95.

View Article and Find Full Text PDF

The electrochemical sulfion oxidation reaction (SOR) is highly desirable to treat sulfion-rich wastewater and achieve energy-saving hydrogen production when coupled with the cathodic hydrogen evolution reaction (HER). Herein, we propose a thermodynamically favorable SOR to couple with the HER, and develop vanadium-doped nickel phosphide (V-NiP) nanosheets for simultaneously achieving energy-efficient hydrogen production and sulfur recovery. V doping can efficiently adjust the electronic structure and improve intrinsic activity of NiP, which exhibits outstanding electrocatalytic performances for the HER and SOR with low potentials of -0.

View Article and Find Full Text PDF

Screened d-p Orbital Hybridization in Turing Structure of Confined Nickel for Sulfion Oxidation Accelerated Hydrogen Production.

Angew Chem Int Ed Engl

November 2024

Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.

The sulfion oxidation reaction (SOR) could offer an energy-efficient and tech-economically favorable alternative to the oxygen evolution reaction (OER) for H production. Transition metal (TM) based catalysts have been considered promising candidates for SOR but suffer from limited activity due to the excessive bond strength from TM-S d-p orbit coupling. Herein, we propose a feasible strategy of screening direct d-p orbit hybridization between TM and S by constructing the Turing structure composed of lamellar stacking carbon-confined nickel nanosheets.

View Article and Find Full Text PDF

Unveiling the Dual Role of Oxophilic Cr in Cr-CuO Nanosheet Arrays for Enhanced Nitrate Electroreduction to Ammonia.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

Article Synopsis
  • - Cuprous oxide (Cu2O) catalysts are effective for turning nitrates into ammonia but suffer from electrochemical instability, which limits their durability and performance understanding.
  • - A new approach stabilizes Cu+ ions by adding Cr4+ to the Cu2O structure, creating a Cr4+-O-Cu+ network that prevents the loss of oxygen and enhances performance.
  • - The combination of Cu+ and in situ generated Cr3+ centers in this network acts as active sites for nitrate reduction, achieving a high Faradaic efficiency of 91.6%, allowing simultaneous ammonia production and sulfur recovery with less energy use.
View Article and Find Full Text PDF

Electrolysis of infinite seawater is a promising and sustainable approach for clean hydrogen production. However, it remains a big challenge to accomplish corrosion-resistant and chlorine-free seawater electrolysis at low power input. Herein, the bimetallic nickel-iron sulfide-based electrocatalytic nanoarrays are constructed by a facile hydrothermal sulfidation of redox-etched iron foam (IF), which manifests an effective and reliable strategy for the sulfion oxidation reaction (SOR) to assist alkaline seawater electrolysis for the achievement of energy-saving hydrogen production and value-added sulfion upcycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!