Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: The expansion of human activities in northern Colombia has increased human-snake encounters, particularly with venomous . Given the limited knowledge of systemic envenomation effects and previous studies focusing only on early murine symptoms, this investigation aimed to describe the time-course physiopathology of envenomation following intramuscular injection .
Methods: Venom was inoculated in the gastrocnemius muscles of Swiss Webster mice, and blood, urine, and tissue samples were taken at different times to evaluate lethality and biochemical markers of renal function and oxidative stress.
Results: This study reports the first intramuscular LD for venom at 24.83 mg/Kg. Administering 80% of this LD induced early signs of renal injury, evidenced by urinary biomarkers over 24 h. The antioxidant activity was found at low levels in kidney tissue throughout the evaluated time post-envenomation. Malondialdehyde activity increased at the earliest point, while proinflammatory activity increased later. Urine metabolomics revealed elevated taurine and allantoin in the envenomed groups.
Discussion: Compensatory mechanisms in response to oxidative stress and tissue damage induced by the venom were evident in the envenomed mice over the evaluated time. However, histological analysis revealed evidence of pro-inflammatory processes occurring only at early times. Metabolomic analyses of urine samples identified taurine as a potential early biomarker of elevated oxidative stress and protein and creatinine levels.
Conclusions: venom induces alterations in murine renal tissue, affecting urinary biomarkers of kidney function within hours post-envenomation. Delayed proinflammatory effects may suggest an antioxidant imbalance in the envenomed mice, with unknown long-term effects. Further research on the role of oxidative stress and inflammation in renal structure and function following envenomation is necessary, emphasizing the need for prompt clinical management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/00368504241304205 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705321 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!